pylinac Documentation
Release 3.8.2

James

Mar 07, 2023

Contents

1 Documentation 3
2 Installation 5
3 Quick Start Guide 7
4 Discussion 13
5 Contributing 15
5.1 Pylinac General OVEIVIEW o v v i i e e e e e e e e e e e e e e e e e 15
5.2 Installation L e e e e e e e e 18
5.3 General TIps . . . o o o e e e e e e e e e e e e 21
5.4 Calibration (TG-51/TRS-398) e 26
5.5 Starshot L e e e e 45
5.6 VMAT . . . e 58
5.7 CatPhan. e e e e e e 74
58 ACRPhantoms e e e e e e e 104
5.9 Quart . ..o e e e e s e 114
5.10 Log Analyzer e e 123
S5.11 Picket Fence o o e e e e e 155
512 Winston-Lutz e e e e e e e 187
5.13 PlanarImaging o . e e e e e e e e e e e e e e e 205
5.14 Field Analysis o e e e 264
5.15 Core Modules e e 284
5.16 Image Generator o o v it e e e e e e e e e e e 312
SAT TOPICS . o v v o e e e e e e e e e e e e e e e 329
5.18 Troubleshooting L e e e e e e e 334
5.19 Contributing e e e e e e e e e e e e 334
520 Changelog e e 335
6 Indices and tables 381
Python Module Index 383
Index 385

pylinac Documentation, Release 3.8.2

n Pylinac

FULL-SCALE AMNALYSIS
I NNENNENNNEIY I F EIIZEEENEENNENEE

Pylinac provides TG-142 quality assurance (QA) tools to Python programmers in the field of therapy and diagnostic
medical physics.

Pylinac contains high-level modules for automatically analyzing images and data generated by linear accelerators, CT
simulators, and other radiation oncology equipment. Most scripts can be utilized with less than 10 lines of code.

The library also contains lower-level hackable modules & tools for creating your own image analysis algorithms.
The major features of the entire package include:

 Simple, concise image analysis API

* Automatic analysis of imaging and performance metrics like MTF, Contrast, ROIs, etc.

* PDF report generation for solid documentation

* Automatic phantom registration even if you don’t set up your phantom perfect

* Image loading from file, ZIP archives, or URLs

Contents 1

https://github.com/jrkerns/pylinac
https://pypi.python.org/pypi/pylinac
https://choosealicense.com/licenses/mit/
http://pylinac.readthedocs.org/en/stable/
http://pylinac.readthedocs.org/en/stable/pylinac_core_hacking.html

pylinac Documentation, Release 3.8.2

2 Contents

CHAPTER 1

Documentation

To get started, install the package, run the demos, view the API docs, and learn the module design, visit the Full
Documentation on Read The Docs.

http://pylinac.readthedocs.org/
http://pylinac.readthedocs.org/

pylinac Documentation, Release 3.8.2

4 Chapter 1. Documentation

CHAPTER 2

Installation

Install via pip:

$ pip install pylinac

See the Installation page for further details.

http://pylinac.readthedocs.io/en/stable/installation.html

pylinac Documentation, Release 3.8.2

6 Chapter 2. Installation

CHAPTER 3

Quick Start Guide

Below are the high-level tools currently available:

¢ TG-51 & TRS-398 Absolute Dose Calibration - Input the raw data and pylinac can calculate either individual

values (kQ, PDDx, Pion, etc) or use the provided classes to input all measurement data and have it calculate
all factors and dose values automatically.

Example script:

from pylinac import tgbl, trs398
ENERGY = 6

TEMP = 22.1

PRESS = tg5l.mmHg2kPa (755.0)
CHAMBER = '30013"' # PTW
P_ELEC = 1.000

ND_w = 5.443 # Gy/nC

MU = 200

CLINICAL_PDD = 66.5

tgbl_6x = tgbl.TG51Photon (
unit="'TrueBeaml',
chamber=CHAMBER,
temp=TEMP, press=PRESS,
n_dw=ND_w, p_elec=P_ELEC,
measured_pddl0=66.4, lead_foil=None,
clinical_pddl0=66.5, energy=ENERGY,
voltage_reference=-300, voltage_reduced=-150,
m_reference=(25.65, 25.66, 25.65),
m_opposite=(25.64, 25.65, 25.65),
m_reduced=(25.64, 25.63, 25.63),
mu=MU, tissue_correction=1.0

Done!
print (tg51l_6x.dose_mu_dmax)

(continues on next page)

http://pylinac.readthedocs.org/en/stable/calibration_docs.html

pylinac Documentation, Release 3.8.2

(continued from previous page)

examine other parameters
print (tgbl_6x.pddx)

print (tgb5l_6x.kq)

print (tg5l_6x.p_ion)

change readings if you adjust output
tg5l_6x.m_reference_adjusted = (25.44, 25.44, 25.43)
print new dose value

print (tgbl_6x.dose_mu_dmax_adjusted)

generate a PDF for record-keeping
tgbl_6x.publish_pdf ('TB1 6MV TG-51.pdf', notes=['My notes', 'I used Pylinac,
—to do this; so easy!'], open_file=False)

TRS-398 is very similar and just as easy!

¢ Planar Phantom Analysis (Leeds TOR, StandardImaging QC-3 & QC-kV, Las Vegas, Doselab MC2 (kV & MV), SNC kV
Features:

— Automatic phantom localization - Set up your phantom any way you like; automatic positioning,
angle, and inversion correction mean you can set up how you like, nor will setup variations give you
headache.

— High and low contrast determination - Analyze both low and high contrast ROIs. Set thresholds as
you see fit.

Example script:

from pylinac import LeedsTOR, StandardImagingQC3, LasVegas, DoselabMC2kV,
—DoselabMC2MV

leeds = LeedsTOR("my_leeds.dcm")
leeds.analyze()
leeds.plot_analyzed_image ()
leeds.publish_pdf ()

gc3 = StandardImagingQC3 ("my_qgc3.dcm")
qgc3.analyze ()
gc3.plot_analyzed_image ()
gc3.publish_pdf ('gc3.pdf")

lv = LasVegas ("my_lv.dcm")

lv.analyze ()

lv.plot_analyzed_image ()

lv.publish_pdf ('lv.pdf', open_file=True) # open the PDF after publishing

* Winston-Lutz Analysis - The Winston-Lutz module analyzes EPID images taken of a small radiation field and
BB to determine the 2D distance from BB to field CAX. Additionally, the isocenter size of the gantry,
collimator, and couch can all be determined without the BB being at isocenter. Analysis is based on
Winkler et al , Du et al, and Low et al.

Features:

— Couch shift instructions - After running a WL test, get immediate feedback on how to shift the
couch. Couch values can also be passed in and the new couch values will be presented so you don’t

8 Chapter 3. Quick Start Guide

http://pylinac.readthedocs.org/en/stable/planar_imaging.html
http://pylinac.readthedocs.org/en/stable/winston_lutz.html
http://iopscience.iop.org/article/10.1088/0031-9155/48/9/303/meta;jsessionid=269700F201744D2EAB897C14D1F4E7B3.c2.iopscience.cld.iop.org
http://scitation.aip.org/content/aapm/journal/medphys/37/5/10.1118/1.3397452
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597475

pylinac Documentation, Release 3.8.2

have to do that pesky conversion. “Do I subtract that number or add it?”

Automatic field & BB positioning - When an image or directory is loaded, the field CAX and the
BB are automatically found, along with the vector and scalar distance between them.

— Isocenter size determination - Using backprojections of the EPID images, the 3D gantry isocenter
size and position can be determined independent of the BB position. Additionally, the 2D planar
isocenter size of the collimator and couch can also be determined.

— Image plotting - WL images can be plotted separately or together, each of which shows the field
CAX, BB and scalar distance from BB to CAX.

— Axis deviation plots - Plot the variation of the gantry, collimator, couch, and EPID in each plane as
well as RMS variation.

— File name interpretation - Rename DICOM filenames to include axis information for linacs that
don’t include such information in the DICOM tags. E.g. “myWL_gantry45_coll0_couch315.dcm”.

Example script:

from pylinac import WinstonLutz

wl = WinstonLutz ("wl/image/directory") # images are analyzed upon loading
wl.plot_summary ()

print (wl.results())

wl.publish_pdf ('my_wl.pdf")

» Starshot Analysis - The Starshot module analyses a starshot image made of radiation spokes, whether gantry,
collimator, MLC or couch. It is based on ideas from Depuydt et al and Gonzalez et al.

Features:

— Analyze scanned film images, single EPID images, or a set of EPID images - Any image that you
can load in can be analyzed, including 1 or a set of EPID DICOM images and films that have been
digitally scanned.

— Any image size - Have machines with different EPIDs? Scanned your film at different resolutions?
No problem.

— Dose/OD can be inverted - Whether your device/image views dose as an increase in value or a
decrease, pylinac will detect it and invert if necessary.

— Automatic noise detection & correction - Sometimes there’s dirt on the scanned film; sometimes
there’s a dead pixel on the EPID. Pylinac will detect these spurious noise signals and can avoid or
account for them.

— Accurate, FWHM star line detection - Pylinac uses not simply the maximum value to find the center
of a star line, but analyzes the entire star profile to determine the center of the FWHM, ensuring small
noise or maximum value bias is avoided.

— Adaptive searching - If you passed pylinac a set of parameters and a good result wasn’t found,
pylinac can recover and do an adaptive search by adjusting parameters to find a “reasonable” wobble.

Example script:

from pylinac import Starshot

star = Starshot ("mystarshot.tif")
star.analyze (radius=0.75, tolerance=1.0, fwhm=True)

print (star.results()) # prints out wobble information
star.plot_analyzed_image() # shows a matplotlib figure
star.publish_pdf () # publish a PDF report

http://pylinac.readthedocs.org/en/stable/starshot_docs.html
http://iopscience.iop.org/0031-9155/57/10/2997
http://dx.doi.org/10.1118/1.1755491

pylinac Documentation, Release 3.8.2

e VMAT QA - The VMAT module consists of two classes: DRGS and DRMLC, which are capable of loading an

EPID DICOM Open field image and MLC field image and analyzing the images according to the Varian
RapidArc QA tests and procedures, specifically the Dose-Rate & Gantry-Speed (DRGS) and MLC speed
(MLCS) tests.

Features:
— Do both tests - Pylinac can handle either DRGS or DRMLC tests.
— Adjust for offsets - Older VMAT patterns were off-center. Pylinac will find the field regardless.

Example script:

from pylinac import DRGS, DRMLC

drgs = DRGS (image_paths=["path/to/DRGSopen.dcm", "path/to/DRGSdmlc.dcm"])
drgs.analyze (tolerance=1.5)

print (drgs.results()) # prints out ROI information
drgs.plot_analyzed_image () # shows a matplotlib figure

drgs.publish_pdf ('mydrgs.pdf') # generate a PDF report

¢ CatPhan, Quart, ACR phantom QA - The CBCT module automatically analyzes DICOM images of a Cat-

Phan 504, 503, 600, 604, Quart DVT, and ACR CT/MR acquired when doing CT, CBCT, or MR quality
assurance. It can load a folder or zip file that the images are in and automatically correct for phantom
setup in 6 axes. CatPhans analyze the HU regions and image scaling (CTP404), the high-contrast line
pairs (CTP528) to calculate the modulation transfer function (MTF), and the HU uniformity (CTP486) on
the corresponding slice. Quart and ACR analyze similar metrics where possible.

Features:

— Automatic phantom registration - Your phantom can be tilted, rotated, or translated—pylinac will
register the phantom.

— Automatic testing of all major modules - Major modules are automatically registered and analyzed.

— Any scan protocol - Scan your CatPhan with any protocol; or even scan it in a regular CT scanner.
Any field size or field extent is allowed.

— Customize modules - You can easily override settings in the event you have a custom scenario such
as a partial scan.

Example script:

from pylinac import CatPhan504, CatPhanb503, CatPhan600, CatPhan604, QuartDVT,
—ACRCT, ACRMRILarge

for this example, we'll use the CatPhan504

cbct = CatPhan504 ("my/cbct_image_folder")

cbct.analyze (hu_tolerance=40, scaling_tolerance=1, thickness_tolerance=0.2,
—low_contrast_threshold=1)

print (cbct.results())

cbct.plot_analyzed_image ()

cbct.publish_pdf ('mycbct.pdf')

* Log Analysis - The log analyzer module reads and parses Varian linear accelerator machine logs, both Dy-

nalogs and Trajectory logs. The module also calculates actual and expected fluences as well as performing
gamma evaluations. Data is structured to be easily accessible and easily plottable.

Unlike most other modules of pylinac, the log analyzer module has no end goal. Data is parsed from the
logs, but what is done with that info, and which info is analyzed is up to the user.

Features:

10

Chapter 3. Quick Start Guide

http://pylinac.readthedocs.org/en/stable/vmat_docs.html
http://pylinac.readthedocs.org/en/stable/cbct_docs.html
http://pylinac.readthedocs.org/en/stable/log_analyzer.html

pylinac Documentation, Release 3.8.2

— Analyze Dynalogs or Trajectory logs - Either platform is supported. Tlog versions 2.1 and 3.0
supported.

— Save Trajectory log data to CSV - The Trajectory log binary data format does not allow for easy
export of data. Pylinac lets you do that so you can use Excel or other software that you use with
Dynalogs.

— Plot or analyze any axis - Every data axis can be plotted: the actual, expected, and even the differ-
ence.

— View actual or expected fluences & calculate gamma - View fluences and gamma maps for any log.
— Anonymization - Anonymize your logs so you can share them with others.

Example script:

from pylinac import load_log

tlog = load_log("tlog.bin")

after loading, explore any Axis of the Varian structure
tlog.axis_data.gantry.plot_actual () # plot the gantry position throughout,
—treatment

tlog.fluence.gamma.calc_map (doseTA=1, distTA=1, threshold=10, resolution=0.1)
tlog.fluence.gamma.plot_map() # show the gamma map as a matplotlib figure
tlog.publish_pdf () # publish a PDF report

dlog = load_log("dynalog.dlg")

* Picket Fence MLL.C Analysis - The picket fence module is meant for analyzing EPID images where a “picket
fence” MLC pattern has been made. Physicists regularly check MLC positioning through this test. This
test can be done using film and one can “eyeball” it, but this is the 21st century and we have numerous
ways of quantifying such data. This module attains to be one of them. It will load in an EPID dicom image
and determine the MLC peaks, error of each MLC pair to the picket, and give a few visual indicators for
passing/warning/failing.

Features:

— Preset & customizable MLC configurations - Standard configurations are built-in and you can cre-
ate your own configuration of leaves if needed.

— Easy-to-read pass/warn/fail overlay - Analysis gives you easy-to-read tools for determining the
status of an MLC pair.

— Any Source-to-Image distance - Whatever your clinic uses as the SID for picket fence, pylinac can
account for it.

— Account for panel translation - Have an off-CAX setup? No problem. Translate your EPID and
pylinac knows.

— Account for panel sag - If your EPID sags at certain angles, just tell pylinac and the results will be
shifted.

Example script:

from pylinac import PicketFence

pf = PicketFence ("mypf.dcm")
pf.analyze (tolerance=0.5, action_tolerance=0.25)
print (pf.results())

(continues on next page)

11

http://pylinac.readthedocs.org/en/stable/picketfence.html

pylinac Documentation, Release 3.8.2

(continued from previous page)

pf.plot_analyzed_image ()
pf.publish_pdf ()

¢ Open Field Analysis - Field analysis from a digital image such as EPID DICOM or 2D device array can easily
be analyzed. The module contains built-in flatness and symmetry equation definitions but is extensible to
quickly create custom F&S equations.

Features: * EPID or device data - Any EPID image or the SNC Profiler. * Built-in F&S equations - The
common Elekta, Varian, and Siemens definitions are included * Extensible equations - Adding custom
equations for image metrics are easy

Example script:

from pylinac import FieldAnalysis, DeviceFieldAnalysis, Protocol

fa = FieldAnalysis (path="myFS.dcm") # equivalently, DeviceFieldAnalysis
fa.analyze (protocol=Protocol.VARIAN)

print results

print (fa.results())

get results as a dict

fa.results_data ()

plot results

fa.plot_analyzed_image ()

publish a PDF file

fa.publish_pdf (filename='my field analysis.pdf')

12 Chapter 3. Quick Start Guide

http://pylinac.readthedocs.org/en/stable/field_analysis.html

CHAPTER 4

Discussion

Have questions? Ask them on the pylinac discussion forum.

13

https://groups.google.com/forum/#!forum/pylinac

pylinac Documentation, Release 3.8.2

14 Chapter 4. Discussion

CHAPTER B

Contributing

Contributions to pylinac can be many. The most useful things a non-programmer can contribute are images to analyze
and bug reports. If you have VMAT images, starshot images, machine log files, CBCT DICOM files, or anything else
you want analyzed, upload them privately here.

5.1 Pylinac General Overview

Analyzed Image 0.5 £1.435e3 _ Wobble Circle

1.0

15

2.0

2.5

3.0

3.5

35 30 25 20 15 1.0 05
+1.268e3

15

https://forms.gle/RBR5ubFvjogE9iC67

pylinac Documentation, Release 3.8.2

Open Image DMLC Image

14 !Medlgn PI:OfI|e|S

12

06 _

0.0 1 i
0 100 200 300 400 500

5.1.1 What is pylinac?

Pylinac (pr. “pie-linac”) is a Python library to analyze the images and datasets commonly used by therapy medical
physicists in the course of their routine QA. These data usually follow tests outlined by AAPM TG-142 and similar
TGs. An example would be the “picket fence” test of MLCs done weekly or monthly.

Pylinac will take in the image/data and can output numeric results, plots showing the analysis, or a PDF including both
the numerical and plot data.

* Pylinac consumes raw data/images to compute meaningful output related to common physics tests

* Pylinac consumes raw data/images to present meaningful data types for further exploration

16 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.1.2 What is pylinac NOT?

 Pylinac is not a database. Data outputs should be placed onto your clinic’s data repository. You should use
a high-quality specialty application like QAtrack+, an open source application taylor-made (bah-dum-ch) for
routine physics QA.

* Pylinac is not liable for incorrect outputs. Either by inputting incorrect data, or the algorithm being incorrect,
you should always validate pylinac against a known methodology (automatic or manual), just as you should do
for any software used in your clinic.

¢ Pylinac is not commercial software. It is open-source with a very lenient MIT license which means it can be
used publicly, privately, or even used in commercial applications royalty-free. In fact, it’s the image analysis
engine for RadMachine, where both the pylinac and QATrack+ authors currently work. Join us!

5.1.3 Intended Audience

Pylinac is intended to be used by physicists who know at least a bit of programming, although just the basics should
be enough for most applications.

5.1.4 Philosophy

Pylinac runs on a few philosophical principles:
* A given module should only address 1 overarching task.
* Using pylinac should require a minimal amount of code.
* The user should have to supply as little information as necessary to run an analysis.
* The underlying code of pylinac should be easy to understand.

The joy of coding Python should be in seeing short, concise, readable classes that express a lot of action
in a small amount of clear code — not in reams of trivial code that bores the reader to death.

—Guido van Rossum

5.1.5 Algorithm Design Overview

Generally speaking, the design of algorithms should all follow the same guidelines and appear as similar as possible.
Each module will outline its own specific algorithm in its documentation.

¢ Descriptions of algorithms are sorted into steps of the following:

Allowances — These describe what the pylinac algorithm can account for.

Restrictions — These are the things pylinac cannot do and must be addressed before the module can be
properly used.

Pre-Analysis — Algorithm steps that prepare for the main algorithm sequence.

Analysis — The steps pylinac takes to analyze the image or data.

Post-Analysis — What pylinac does or can do after analysis, like showing the data or checking against
tolerances.

 Algorithm steps should be expressible in a word or short phrase.

* Algorithm method names should be as similar as possible from module to module.

5.1. Pylinac General Overview 17

http://qatrackplus.com/
https://github.com/jrkerns/pylinac/blob/master/LICENSE.txt
https://www.radformation.com/radmachine/radmachine
https://www.radformation.com/careers

pylinac Documentation, Release 3.8.2

5.1.6 Module Design

Pylinac has a handful of modules, but most of them work somewhat the same, so here we describe the general patterns
you’ll see when using pylinac.

* Each module has its own demonstration method(s) — If you don’t yet have an image or data and want to see
how a module works you can run and inspect the code of the demo to get an idea. Most demo methods have a
name like or starts with . run_demo ().

* Each module has its own demo image/dataset(s) — Want to test the analysis but are having trouble with your
image? Use the provided demo images. All major classes have a demo image or dataset and are usually similar
to . from_demo_image ().

* Each module has similar load, analyze, and show methods and behavior — The normal flow of a pylinac
module use is to 1) Load the data in, 2) Analyze the data, and 3) Show the results.

¢ Most modules can be fully utilized in a few lines — The whole point of pylinac is to automate and simplify the
process of analyzing routine QA data. Thus, most routines can be written in a few lines.

5.2 Installation

Installing pylinac is easy no matter your skill! Determine where you’re at and then read the relevant section:

5.2.1 | know Python already

Great! To get started install via pip:

$ pip install pylinac

Note: Installing from source (setup.py install) is possible but not recommended as downloading the source
includes numerous sizable test files.

5.2.2 Dependencies

Pylinac, as a scientific package, has fairly standard scientific dependencies (>= means at least that version or newer).
Installing the package via pip will install these for you:

numpy >= 1.16
scipy >= 1.1
pydicom >= 2.0
matplotlib >= 2.
scikit-image >=
Pillow >= 4.0
tgdm >= 3.8
reportlab >= 3.3
argue

py-ling
cached-property~=1.5.2

0
0.17

18 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.2.3 I’'m new to Python

That’s okay! If you’re not a programmer at all you’ll have a few things to do to get up and running, but never fear.
Using pylinac requires not just the base language Python, but a few dependencies as well. Since most physicists don’t
program, or if they do it’s in MATLAB, this section will help jumpstart your use of not just pylinac but Python in
general and all its wonderful goodness! Getting started with Python takes some work to get set up and running, but
it’s well worth the effort.

Get a Distribution Stack

Scientific computing with Python requires some specialized packages which require some specialized computing
libraries. While it’s possible you have those libraries (for some odd reason), it’s not likely. Thus, it’s often best to
install the libraries pre-compiled. There are several options out there; I'1l list just a few. Be sure to download the 3.x
version, preferably the newest:

¢ Anaconda - Continuum Analytics provides this one-stop-shop for tons of scientific libraries in an easy to install
format. Just download and run the installer. If you don’t want to install all 200+ packages, a slimmer option
exists: Miniconda, which only installs conda and python installation tools. You can then use conda to install
packages individually. Here’s the Anaconda quick start guide.

Note: Unlike the other options, individual packages can be upgraded on demand using the conda tool.

e WinPython - (Windows only) This grassroots project functions similarly to Anaconda, where all packages are
precompiled and run out of the box. There are no corporate sponsors for this project, so support is not guaran-
teed.

See Scipy’s Installation Options for more options.

Warning: Python(x,y) is not yet available for Python 3, so don’t choose this to try running pylinac.

Note: If this is the first/only Python distribution you’ll be using it’d be a good idea to activate it when the installer
prompts you.

Note: You can install multiple Python stacks/versions, but only one is “active” at any given time.

Get an IDE (optional)

If you come from MATLAB, it’s helpful to realize that MATLAB is both a language and an Integrated Development
Environment (IDE). Most languages don’t have an official IDE, and some people may tell you IDEs are a crutch. If
being a cyborg with superpowers is a crutch, then call me a cripple because I find them extremely useful. As with all
power, it must be wielded carefully though. The option of getting an IDE is completely up to you. If you want one,
here are some options:

e PyCharm - A fully-featured, rich IDE. It’s arguably king of the heavyweights and free. At least try it. Here’s the
PyCharm quick start guide.

5.2. Installation 19

http://continuum.io/downloads#py34
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/index.html
https://store.continuum.io/static/img/Anaconda-Quickstart.pdf
https://winpython.github.io/
http://www.scipy.org/install.html
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/quickstart/

pylinac Documentation, Release 3.8.2

django_tutorial polls) g models.py

0

Po.ov © T & ftests.py % models. py % _-init__.py % manage.py
django_tutorial datetime
admin

Project

bin django.db models

¥

3soH a30uay il

include django.utils timezone

mysite
polls
> migrations
v hmstatic
v polls
style.t
templates
B --init__.py

»adnin.py . Rename class 'Question' and its usages to:
apps. py was_published_rece
3 o

W= ti C uestion
% models.py now = timezone.n Q

Structure

Question(models.Model):
question_text = models.CharField(
pub_date = models.DateTimeField(

aseqeieq

.questic Rename

¢ Commit
MITATOS

tests.py now - date)
4 i Search in comments and strings [Search for text occurrences
B urls.py

% views.py

v/ Rename inheritors

Choice(models.Mode Scope
.gitignore question \r:m”el: Project Files
LICENSE votes = models.Intege
% Manage .py
README.md
requirements.
External Librari
Scratches and Cc

Question
Django Console

= Special Variables
=y Diango 3.0.6

K 9: 6it TODO p 4: Run PH Terminal & Python Console (@ 8: Services 4 Event Log

Tests passed: 10 (35 minutes ago) 8 chars 7:12 LF UTF-8 4 spaces Python 3.8 (django_tutorial) [master & @

e Spyder - A MATLAB-like IDE with similar layout, preferred by many working in the scientific realm. Here are
the Spyder docs.

Note: Spyder is part of the Anaconda distribution.

20 Chapter 5. Contributing

https://code.google.com/p/spyderlib/
https://pythonhosted.org/spyder/

pylinac Documentation, Release 3.8.2

File Edit Search Source Run Tools |\iew 7?7
p— = . . s ' [1
(il[a] A 2/ €3 iR b = oe es i w : 5 @ 25 eyt [v] & 2 4
IPython (IPK1) & x| | Variable explorer & x
hod I T 5 al
IPython @.12.dev -- An enhanced Interactive Python. o = = 12e e C
? -» Introduction and overview of IPython's features. e float 1 2.71832818234596451 |a
Fquickref -> Quick reference. S,
help -» Python's own help system. pi float i 3.1415926535897931 -
object? -» Details about 'object', use 'object??' for extra details.
%guiref -> A brief reference about the graphical user interface. % foatsa (50 a"“'ay“'lgésn‘m o SEREELETLD | e
In [1]: x = linspace(-18, 18) H
In [2]: plot(x, x**3) 3 =
out[2]: [<matplotlib.lines.Line2D at ©x3833038>]
1000
Variable explorer Qutiine
Object inspector J X
500 Source |CDnSD\E Vl Object | linspace "l £ [5= options.
linspace(start, stop, num=50, endpoint=True, retstep=Falsc) | °|
0 Function of numpy.core.function_base module
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, 3
-500 stop].
The endpoint of the interval can optionally be excluded.
—1000
=10 -5 o 5 10 Parameters
In [3]: start : scalar
- The starting value of the sequence.
hl stop : scalar L
Editor - D:Pythontipyth Python\frontendiat I " The end value of the sequen:a,_un\ess endpoint is set to False.
IEYthoal(Exa) er PythonliythanIPythanfrontendiatikernemanager. py In that case, the sequence consists of all but the last of num = 1
Console 5 = evenly spaced samples, so that stop is excluded. Note that the
step size changes when endpaint is False.
~3| * python 1 % PyKernel 1 £ 00:00:06 [i= b num : int, optional
Number of samples to generate. Default is 50.
[IPKernelapp] To connect ancther client to this kernel, use: endpoint : bool, optional
[IPkernelapp] --existing --shell=62459 --iopub=64449 --stdin=58721 --hb=2481 If True, stop is the Iast sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing
Internal console Console between samples.]
Permissions: R End-ofdines: CRLF Encoding: UTF-8-GUESSED Line: 169 Column: 1

5.3 General Tips

Using pylinac is easy! Once installed, you can write your own script in a matter of minutes. Each module of pylinac
addresses the topic of its name (e.g. the Starshot class, surprisingly, performs starshot analysis). Furthermore,
each module is designed as similarly as possible to one another. So once you start using one module, it’s easy to use
another (see Module Design). Each module also has its own demonstration method and data to show off what it can

do.

5.3.1 Running a Demo

Let’s get started by running a demo of the Starshot module. First, import the Starshot class:

from pylinac import Starshot

This class has all the capabilities of loading and analyzing a Starshot image. Let’s 1) create an instance of that class

and then 2) run its demonstration method:

from pylinac import Starshot

Starshot.run_demo ()

Running this should result in a printing of information to the console and an image showing the analyzed image, like

SO:

5.3. General Tips

21

pylinac Documentation, Release 3.8.2

Analyzed Image Wobble Circle

36.0 A /

36.5 A

37.0 A

37.5

38.0 -

1270.51270.01269.51269.0

22 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Result: PASS

The minimum circle that touches all the star lines has a diameter of 0.434 mm.

The center of the minimum circle is at 1270.1, 1437.1

Congratulations! In 3 lines you’ve successfully used a pylinac module. Of course there’s more to it than that; you’ll
want to analyze your own images. For further documentation on starshots, see Starshot.

5.3.2 Loading in Images/Data

All modules have multiple ways of loading in your data. The best way to use a given module’s main class is instan-
tiating with the image/data file name. If you have something else (e.g. a URL or set of multiple images) you can use
the class-based constructors that always start with from_. Let’s use the 1og_analyzer module to demonstrate:

’from pylinac import TrajectoryLog

We can pass the path to the log, and this would be the standard way of constructing:

’log = TrajectoryLog(r"C:/John/QA/log.dlg")

Perhaps the data is stored online somewhere. You can load in the data from a URL:

’log = TrajectorylLog.from_ url ('https://myserver.com/logs/log23.bin')

If for any reason you don’t have data and want to experiment, you can easily load in demo data:

’tlog = TrajectoryLog. from_demo ()

You can find out more about logs in the Log Analyzer. All modules are similar however; the main class can be
instantiated directly, through class-based constructors, from a URL, and all main classes have a demo dataset and
demo method.

5.3.3 Changing Colormaps

The colormaps in pylinac are pretty standard. By default, DICOM images are shown in grayscale, while most other
arrays are shown in jet. Changing these is easy though. All that’s required is to pass a valid matplotlib colormap (see
options here). Let’s set the DICOM plots to be ‘cool’:

import pylinac

change the colormap setting
pylinac.settings.DICOM_COLORMAP = 'cool'
pylinac.CatPhan504.run_demo ()

We can also change other arrays, for example the arrays in the 1og_analyzer module. Let’s change it to the newer,
better matplotlib default colormap, viridis:

import matplotlib.pyplot as plt
import pylinac

pylinac.settings.ARRAY_COLORMAP = plt.cm.viridis
pylinac.TrajectoryLog.run_demo ()

5.3. General Tips 23

http://matplotlib.org/examples/color/colormaps_reference.html

pylinac Documentation, Release 3.8.2

HU linearity RMTF
40 1.0
HU Uniformity HU Linearity
20 = 0.8
3 =
2 o 2o
D +J
T 3 0.4 -
—-20 + o
0.2
~40 h
—1000 0 1000 0.25%.51.75
Nominal Values Line pairs / mm
Uniformity Profiles
\atial Resolution Low Contrast Uy = —
—-250
-}
T 500
—750 —— Horizontal
— Vertica
—-1000 i '

0 100 200 300 400 500

24 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Actual Image Expected Image Gamma Map

0 Gatiha MHetdgm © (L3R KRB A O Leaf RS (mm)

106 50p00
i 0.p20 i
% obis | ||||||“‘|““.u‘ NI
Y
|l TH H“HHHHNW\H\ \“WHW |
I L T
10° 1 . . 0 —LL—HOO
0.0 0.5 1.0 0.000 0.002 0 50 100

. General Tips 25

pylinac Documentation, Release 3.8.2

5.4 Calibration (TG-51/TRS-398)

5.4.1 Overview

The calibration module actually consists of two submodules: tg51 and trs398, each addressing their respective
protocol. Both modules contain functions and classes for calculation the protocol dose. The modules have some
overlap, especially with basic functions as well as helper functions. The modules have tried to use the vocabulary of
the respective protocol, but occasionally there are differences when we felt that using the same name was clearer. See
the vocabulary section for full definitions.

Note: Besides the typical calculations one would expect, the modules also include helper functions, such as a PDD
to TPR converter so that a TG-51 calculation can determine kQ from TPR and avoid the tedious PDDx. Additionally,
pressure unit converters exist to go from the various units of pressure to kPa which is what pylinac uses.

5.4.2 Vocabulary that may be different than the protocol
* voltage_reference: Used in both TG-51 and TRS-398 for the voltage used when taking a reference
reading; commonly -300V.

* voltage_reduced: Use in both TG-51 and TRS-398 for the lower voltage used to determine ks/Pion; com-
monly -150V.

* m_reference: The ion chamber reading at the reference voltage.
e m_reduced: The ion chamber reading at the reduced voltage.
* m_opposite: The ion chamber reading at the opposite polarity of the reference voltage: commonly +300V.

Vocabulary not listed here should be the same as the respective protocol.

5.4.3 Changing a bound

Bounds are placed in the module to prevent catastrophic errors from passing in the wrong values; e.g. the wrong units.
If you live in a place that has extreme temperatures or pressures or just otherwise want to change the default bounds,
you can change the default range of acceptable values. E.g. to change the minimum allowable temperature that can be
passed:

from pylinac import tg51
tg5l.p_tp(temp=5, press=100) # will raise bounds error

override
tg51.MIN_TEMP = 0

tg5l.p_tp (temp=5, press=100) # no bounds error will be raised

You can override the min/max of temp, pressure, p ion, p elec, p tp, p pol. These bounds are the same for TRS-398.
Le. setting these in either module will set them for both modules.

5.4.4 TG-51

26 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Equation Definitions

Equation definitions are as follows:
* Ptp (Temp/Pressure correction) - TG-51 Eqn. 10:

2732+ T . 101.33
273.2 + 22 P

Warning: Temperature is in Celsius and pressure is in kPa. Use the helper functions
fahrenheitZcelsius (), mmHg2kPa (), and mbar2kPa () as needed.

* Ppol (Polarity correction) - Rather than using TG-51 Eqn. 9, we opt instead for TRS-398 Eqn xx, which uses
the absolute values of the positive and negative voltages. This is the same results as Eqn. 9 but without worrying
about signs.:

| M| + 1M,

aw aw |

2% Myaw

* Pion (Ion collection correction; only for pulsed beams) - TG-51 Eqn. 12:

_Vu
VL

* Dref (Reference electron depth; cm) - TG-51 Eqn. 18:

0.6 * R50 —0.1

* R50 (Beam quality specifier; 50% dose depth; cm) - TG-51 Eqn. 16 & 17:

1.029 % Isg — 0.06(cm) 2 < I5o < 10
1.059 % Isg — 0.37(cm) I5010

* kK’R50 (k’R50 for cylindrical chambers) - TG-51 Eqn. 19:

—Rs0
0.9905 + 0.0710e 567
* PQ_gr (PQ gradient correction for cylindrical chambers) - TG-51 Eqn. 21:

Mraw(dref + 0.5 * rcav)
Mraw * dref

* PDDx (PDD from photons only) - TG-51 Eqns. 13, 14 & 15:

PDD(10) energy < 10

PDD(10) nolead, energy >= 10, PDD(10) < 75
1.267 « PDD(10) — 20.0 nolead, 75 < PDD(10) < 89
PDD(10)py lead@50cm, PDD(10)pp < 73

(0.8905 + 0.00150 * PDD(10)py) * PDD(10)py lead@50em, PDD(10)py > 73
PDD(10)py lead@30cm, PDD(10) py < 71

(0.8116 + 0.00264 * PDD(10)py) ¥ PDD(10)py lead@30em, PDD(10)py, > 71

5.4. Calibration (TG-51/TRS-398) 27

pylinac Documentation, Release 3.8.2

* M-corrected (corrected chamber reading) - TG-51 Eqn. 8:

Pion*PTP*Pelec*Ppol*Mraw

* kQ for Photons (cylindrical chamber-specific quality conversion factor) - TG-51 Addendum Eqn 1 & Table I:

{A+B+10735 PDD(10)z + C % 105+ (PDD(10)2)* 63 < PDD(10)x < 86

Where A, B, and C are chamber-specific fitting values as given in Table I. Pylinac automatically retrieves values
based on the chamber model passed to the function.

* kQ for Electrons (cylindrical chamber-specific quality conversion factor) - Muir & Rogers 2014

The study of Muir & Rogers was to find kecal values that could be determined soley from R50. Through Monte
Carlo experiments, the optimal Pgradient was determined as well as fitting parameters for numerous common
ion chambers. That study eliminates the need for Pgradient measurements. These kecal values will very likely
be incorporated into the next TG-51 addendum (as has their kQ values for photons in the first addendum). From
the paper, we can start with the known relationship given in Eqn. 9:

kQ = kQ,ecal * le
where Eqn. 11 states:
kg =a+0bx Ry

Where a, b, and ¢ are chamber-specific fitting values as given in Table VII and where k¢ ccq; is given in Table
VL

+ D@ photon (Dose to water at 10cm from a photon beam of quality Q - TG-51 Eqn. 3:

M x kg * Ng?go(Gy)

+ D@ electron (Dose to water at 10cm from an electron beam of quality Q - TG-51 Eqn. 6:

M # PR s ki # kecar * NJ 90 (Gy)

Function-based Use

Using the TG-51 module can be complementary to your existing workflow, or completely replace it. For exam-
ple, you could use the kQ function to calculate kQ and then calculate the other corrections and values yourself.
If you want something a little more complete, you can use the TG51Photon, TG51ElectronLegacy and
TG51ElectronModern classes which will calculate all necessary corrections and values.

Note: The Photon class uses kQ values from the TG-51 addendum. The Legacy Electron class will make the user
specify a kecal value and measure Pgradient. The Modern Electron class will calculate kQ completely from R50 and
the chamber from Muir & Rogers 2014 paper, no kecal or Pgradient needed.

"""A script to calculate TG-51 dose using pylinac functions and following the TG-51_,
—photon form"""
from pylinac.calibration import tg51

ENERGY = 6

(continues on next page)

28 Chapter 5. Contributing

http://onlinelibrary.wiley.com/doi/10.1118/1.4893915/abstract

pylinac Documentation, Release 3.8.2

(continued from previous page)

TEMP = 22.1

PRESS = tg51.mmHg2kPa (755.0)
CHAMBER = '30013' # PTW
P_ELEC = 1.000

ND_w = 5.443 # Gy/nC

MU = 200

CLINICAL_PDD = 66.5

Section 4 (beam quality)
since energy is 6MV, PDDx == PDD, but we'll run it through anyway just for show
pddl0x = tg51l.pddx (pdd=66.4, energy=ENERGY)

Section 5 (kQ)

kg = tgbl.kg _photon_pddx (chamber=CHAMBER, pddx=pddl0x)

Alternatively, get kQ from TPR (way quicker to measure, without needing to measure_
< TPR!)

tpr = tg51.tpr2010_from_pdd2010 (pdd2010=(38.0/66.4))

kg = tg5l.kg _photon_tpr (chamber=CHAMBER, tpr=tpr)

Section 6 (Temp/Press)
p_tp = tg5l.p_tp (temp=TEMP, press=PRESS)

Section 7 (polarity)

m_reference = (25.66, 25.67, 25.66)

m_opposite = (25.67, 25.67, 25.68)

p_pol = tg5l.p_pol (m_reference=m_reference, m_opposite=m_opposite)

Section 8 (ionization)

m_reduced = (25.61, 25.62)

p_ion = tgbl.p_ion(voltage_reference=300, voltage_reduced=150, m_reference=m_
—~reference, m_reduced=m_reduced)

Section 9 (M corrected)
m_corr = tg5l.m_corrected(p_ion=p_ion, p_tp=p_tp, p_elec=P_ELEC, p_pol=p_pol, m_
—~reference=m_reference)

Section 10 (dose to water @ 10cm)
dose_10 = m_corrxkg+ND_w
dose_10_per_mu = dose_10 / MU

Section 11 (dose/MU to water @ dmax)
dose_ddmax = dose_10_per_mu / CLINICAL_PDD

Done!
print (dose_ddmax)

Class-based Use

"""A script to calculate TG-51 dose using pylinac classes and following the TG-51_,
—photon form"""
from pylinac.calibration import tg51

(continues on next page)

5.4. Calibration (TG-51/TRS-398) 29

pylinac Documentation, Release 3.8.2

(continued from previous page)

PRESS = tg5l.mmHg2kPa (755.0)
CHAMBER = '30013' # PTW
P_ELEC = 1.000

ND_w = 5.443 # Gy/nC

MU = 200

CLINICAL_PDD = 66.5

tg51_6x = tg51.TG51Photon (
unit="'TrueBeaml',
chamber=CHAMBER,
temp=TEMP, press=PRESS,
n_dw=ND_w, p_elec=P_ELEC,
measured_pddl0=66.4, lead_foil=None,
clinical_pddl0=66.5, energy=ENERGY,
voltage_reference=-300, voltage_reduced=-150,
m_reference=(25.65, 25.66, 25.65),
m_opposite=(25.64, 25.65, 25.65),
m_reduced= (25.64, 25.63, 25.63),
mu=MU, tissue_correction=1.0

Done!
print (tgbl_6x.dose_mu_dmax)

examine other parameters
print (tgbl_6x.pddx)

print (tg5l_6x.kq)

print (tg5l_6x.p_ion)

change readings if you adjust output
tg51l_6x.m_reference_adjusted = (25.44, 25.44, 25.43)
print new dose value

print (tgb5l_6x.dose_mu_dmax_adjusted)

generate a PDF for record-keeping

tgbl_6x.publish_pdf ('TB1 6MV TG-51.pdf', notes=['My notes',

—this; so easy!'], open_file=False)

'T used Pylinac to do,,

5.4.5 TRS-398

Warning: Pylinac does not calculate electron dose in any other conditions than water; i.e. no solid water.

Equation Definitions

* Ktp (Temp/Pressure correction):

2732+ T . 101.33
273.2 + 22 P

mmHg2kPa, and mbar2kPa as needed.

Warning: Temperature is in Celsius and pressure is in kPa. Use the helper functions fahrenheit2celsius,

30

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* Kpol (Polarity correction):

|M, |+ M,
2% Myow

* Ks (Ion collection correction; only for pulsed beams):

M M
ap + ay * (ﬁ:) + ag * (ﬁ;)z
 Zref (Reference electron depth; cm) - TRS-398 7.2:
0.6 * R50 —0.1

* R50 (Beam quality specifier; 50% dose depth; cm) - TRS-398 7.1:

1.029 % Iso — 0.06(cm) 2 < I5y < 10
1.059 * 150 - 037(cm) 15010

+ D@ photon (Dose to water at Zref from a photon or electron beam of quality Q - TRS-398 7.3:

Dy,q = Mq * Np,w,qo * kq,o(GY)

* M-corrected (corrected chamber reading):

MQ = ks * kTP * Kelec * Kpol * Ml

* kQ,Qo for Photons (cylindrical chamber-specific quality conversion factor): TRS-398 Table 6.111

* kQ for Electrons (cylindrical chamber-specific quality conversion factor; calibrated in Co-60): TRS-398 Table
7.1

Function-based Use

"""A script to calculate TRS-398 dose using pylinac functions and following the TRS-
—~398 photon form"""
from pylinac.calibration import trs398

TEMP = 22.1

PRESS = trs398.mmHg2kPa (755.0)
CHAMBER = '30013' # PTW
K_ELEC = 1.000

ND_w = 5.443 # Gy/nC

MU = 200

Section 3 (dosimeter corrections)
k_tp = trs398.k_tp(temp=TEMP, press=PRESS)
k_pol = trs398.k_pol (m_reference=(25.66, 25.67, 25.66), m_opposite=(25.65, 25.66, 25.
—66))
k_s = trs398.k_s(voltage_reference=300, voltage_reduced=150,
m_reference=(25.66, 25.67, 25.66), m_reduced=(25.63, 25.65, 25.64))

(continues on next page)

5.4. Calibration (TG-51/TRS-398) 31

pylinac Documentation, Release 3.8.2

(continued from previous page)

m_corrected = trs398.m_corrected (m_reference=(25.66, 25.67, 25.66),
k_tp=k_tp, k_elec=K_ELEC, k_pol=k_pol, k_s=k_s) \
/ MU

Section 4 (kQ + dose at zref)
kg = trs398.kg_photon (chamber=CHAMBER, tpr=(39.2/68.1))
dose_mu_zref = m_corrected x ND_w * kg

Section 5 (Dose at zmax)

SSD setup

CLINICAL_PDD 66.5

dose_mu_zmax = dose_mu_zref x 100 / CLINICAL_PDD

SAD setup
CLINICAL_TMR = 0.666
dose_mu_zmax = dose_mu_zref / CLINICAL_TMR

Done!
print (dose_mu_zmax)

Class-based Use

""M"A script to calculate TRS-398 dose using pylinac classes and following the TRS-398_
—photon form"""
from pylinac.calibration import trs398

ENERGY = 6

TEMP = 22.1

PRESS = trs398.mmHg2kPa (755.0)
CHAMBER = '30013" # PTW
K_ELEC = 1.000

ND_w = 5.443 # Gy/nC

MU = 200

CLINICAL_PDD = 66.5

trs398_6x = trs398.TRS398Photon (
unit="'TrueBeaml',
setup='SsD',
chamber=CHAMBER,
temp=TEMP, press=PRESS,
n_dw=ND_w,
clinical_pdd_zref=CLINICAL_PDD,
tpr2010=(38.2/66.6),
energy=ENERGY,
fff=False,
k_elec=K_ELEC,
voltage_reference=-300, voltage_reduced=-150,
m_reference=(25.65, 25.66, 25.65),
m_opposite=(25.64, 25.65, 25.65),
m_reduced=(25.64, 25.63, 25.63),
mu=MU, tissue_correction=1.0

Done!

(continues on next page)

32 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

print (trs398_6x.dose_mu_zmax)

examine other parameters
print (trs398_6x.kq)

print (trs398_6x.k_s)

print (trs398_6x.k_tp)

change readings if you adjust output
trs398_6x.m_reference_adjusted = (25.44, 25.44, 25.43)
print new dose value

print (trs398_6x.dose_mu_zmax_adjusted)

generate a PDF for record-keeping
trs398_6x.publish_pdf ('TB1 6MV TRS-398.pdf', notes=['My notes', 'I used Pylinac to do_
—this; so easy!'], open_file=False)

5.4.6 TG-51 APl Documentation

pylinac.calibration.tg5l.mmHg2kPa (mmHg: float) — float
Utility function to convert from mmHg to kPa.

pylinac.calibration.tg51.mbar2kPa (mbar: float) — float
Utility function to convert from millibars to kPa.

pylinac.calibration.tg5l.fahrenheit2celsius (f: float) — float
Utility function to convert from Fahrenheit to Celsius.

pylinac.calibration.tg5l.tpr2010_£from_pdd2010 (* pdd2010: float) — float
Calculate TPR20,10 from PDD20,10. From TRS-398 pg 62 and Followill et al 1998 eqn 1.

pylinac.calibration.tg5l.p_tp (¥ temp: float, press: float) — float
Calculate the temperature & pressure correction.

Parameters
* temp (float (17-27))- The temperature in degrees Celsius.

* press (float (91-111)) — The value of pressure in kPa. Can be converted from
mmHg and mbar; see mmHg2kPa () and mbar2kPa ().

pylinac.calibration.tg5l.p_pol (¥ m_reference: Unionf[float, list, tuple, numpy.ndarray],

m_opposite: Union[float, list, tuple, numpy.ndarray]) — float
Calculate the polarity correction.

Parameters

* m_reference (number, array) - The readings of the ion chamber at the reference
polarity and voltage.

* m_opposite (number, array)— The readings of the ion chamber at the polarity op-
posite the reference. The sign does not make a difference.

Raises BoundsError if calculated Ppol is >1% from 1.0.

pylinac.calibration.tg5l.p_ion (¥ voltage_reference: int, voltage_reduced: int, m_reference:
Union[float, list, tuple, numpy.ndarray], m_reduced:

Union[float, list, tuple, numpy.ndarray]) — float
Calculate the ion chamber collection correction.

Parameters

5.4. Calibration (TG-51/TRS-398) 33

pylinac Documentation, Release 3.8.2

* voltage_reference (int)—The “high” voltage; same as the TG51 measurement volt-
age.

* voltage_reduced (int) - The “low” voltage; usually half of the high voltage.

* m_reference (float, iterable)- The readings of the ion chamber at the “high”
voltage.

* m_reduced (float, iterable)- The readings of the ion chamber at the “low” volt-
age.

Raises BoundsError if calculated Pion is outside the range 1.00-1.05.

pylinac.calibration.tg51.d_ref (¥, i_50: float) — float
Calculate the dref of an electron beam based on the I50 depth.

Parameters i_50 (fIoat)— The value of I50 in cm.

pylinac.calibration.tg51.x_50 (* i_50: float) — float
Calculate the R50 depth of an electron beam based on the 150 depth.

Parameters i_50 (fIoat)— The value of I50 in cm.

pylinac.calibration.tg51.kp_x50 (* r_50: float) — float
Calculate k’R50 for Farmer-like chambers.

Parameters r_50 (float (2-9))- The R50 value in cm.

pylinac.calibration.tg5l.pq_gr (¥ m_dref plus: Union[float, list, tuple, numpy.ndarray], m_dref:

Union[float, list, tuple, numpy.ndarray]) — float
Calculate PQ_gradient for a cylindrical chamber.

Parameters

* m_dref plus (float, iterable) — The readings of the ion chamber at dref +
0.5rcav.

* m_dref (float, iterable)- The readings of the ion chamber at dref.

pylinac.calibration.tg51.m_corrected (* p_ion: float, p_tp: float, p_elec: float, p_pol: float,
m_reference: Union[float, list, tuple, numpy.ndarray])

Calculate M_corrected, the ion chamber reading \gtl?gﬁ[corrections applied.
Parameters
e p_ion(float (1.00-1.05))- The ion collection correction.
s p_tp(float (0.92-1.08))— The temperature & pressure correction.
* p_elec(float (0.98-1.02))— The electrometer correction.
* p_pol (float (0.98-1.02))— The polarity correction.
* m_reference (float, iterable)- The raw ion chamber reading(s).
Returns
Return type float
pylinac.calibration.tg5l.pddx (¥ pdd: float, energy: int, lead_foil: Optional[str] = None) —
Calculate PDDx based on the PDD. float

Parameters

e pdd ({>62.7, <89.0})— The measured PDD. If lead foil was used, this assumes the
pdd as measured with the lead in place.

34 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* energy (int)— The nominal energy in MV.

* lead_foil ({None, '30cm', '50cm'}) — Applicable only for energies >10MV.
Whether a lead foil was used to acquire the pdd. Use None if no lead foil was used and
the interim equation should be used. This is the default Use 50cm if the lead foil was set
to 50cm from the phantom surface. Use 30cm if the lead foil was set to 30cm from the
phantom surface.

pylinac.calibration.tg5l.kq _photon_pddx (* chamber: str, pddx: float) — float
Calculate kQ based on the chamber and clinical measurements of PDD(10)x. This will calculate kQ for photons
for CYLINDRICAL chambers only.

Parameters

e chamber (str)— The chamber of the chamber. Valid values are those listed in Table III
of Muir and Rogers and Table I of the TG-51 Addendum.

* pddx ({>63.0, <86.0})— The PHOTON-ONLY PDD measurement at 10cm depth
for a 10x10cm?2 field.

Note: Use the pddx () function to convert PDD to PDDx as needed.

Note: Muir and Rogers state limits of 0.627 - 0.861. The TG-51 addendum states them as
0.63 and 0.86. The TG-51 addendum limits are used here.

pylinac.calibration.tg5l.kq _photon_tpr (* chamber: str, tpr: float) — float
Calculate kQ based on the chamber and clinical measurements of TPR20,10. This will calculate kQ for photons
for CYLINDRICAL chambers only.

Parameters

* chamber (str)— The chamber of the chamber. Valid values are those listed in Table III
of Muir and Rogers and Table I of the TG-51 Addendum.

* tpr ({>0.630, <0.860})—-The TPR(20,10) value.

Note: Use the tpr2010_from pdd2010 () function to convert from PDD without
needing to take TPR measurements.

pylinac.calibration.tg5l.kq_electron (* chamber: str, r_50: float) — float
Calculate kQ based on the chamber and clinical measurements. This will calculate kQ for electrons for CYLIN-
DRICAL chambers only according to Muir & Rogers.

Parameters

* chamber (str)— The chamber of the chamber. Valid values are those listed in Tables VI
and VII of Muir and Rogers 2014.

* r_50 (float) - The R50 value in cm of an electron beam.

5.4. Calibration (TG-51/TRS-398) 35

pylinac Documentation, Release 3.8.2

5

class pylinac.calibration.tg51.TG51Photon (¥ institution: str = 7, physicist: str =
, unit: str, measurement_date: str = ”,
temp: float, press: float, chamber: str,
n_dw: float, p_elec: float, electrometer: str
= 7, measured_pddl0: Optional[float] =
None, lead_foil: Optional[str] = None, clin-
ical_pddl0: float, energy: int, fff: bool =
False, voltage_reference: int, voltage_reduced:
int, m_reference: Union[float, list, tuple,
numpy.ndarray], m_opposite: Union[float,
list, tuple, numpy.ndarray], m_reduced:
Unionf[float, list, tuple, numpy.ndarray],
muy: int, tissue_correction: float = 1.0,
m_reference_adjusted: Union[float, list, tuple,

numpy.ndarray, None] = None)
Bases: pylinac.calibration.tg51.TG51Base

”»

Class for calculating absolute dose to water using a cylindrical chamber in a photon beam.
Parameters
e institution (str) - Institution name.
* physicist (str)— Physicist performing calibration.
* unit (str)— Unit name; e.g. TrueBeaml.
* measurement_date (str)— Date of measurement. E.g. 10/22/2018.

* temp (float) - The temperature in Celsius. Use fahrenheitZ2celsius () to convert
if necessary.

* press (float)— The value of pressure in kPa. Can be converted from mmHg and mbar;
see mmHgZ2kPa () and mbar2kPa ().

* energy (float)— Nominal energy of the beam in MV.

¢ chamber (st r)— Chamber model. Must be one of the listed chambers in TG-51 Adden-
dum.

* n_dw (float)— NDW value in Gy/nC.
* p_elec (float)— Electrometer correction factor; given by the calibration laboratory.

* measured_pddl0 (float) — The measured value of PDD(10); will be converted to
PDDx(10) and used for calculating kq.

* lead foil ({None, '50cm', '30cm'})— Whether a lead foil was used to acquire
PDD(10)x and where its position was. Used to calculate kq.

* clinical_pdd10 (float)— The PDD used to correct the dose at 10cm back to dmax.
Usually the TPS PDD(10) value.

* voltage_reference (int) — Reference voltage; i.e. voltage when taking the calibra-
tion measurement.

* voltage_reduced (int)— Reduced voltage; usually half of the reference voltage.
* m_reference (float, tuple)-lonchamber reading(s) at the reference voltage.

* m_opposite (float, tuple)-Ilonchamber reading(s) at the opposite voltage of ref-
erence.

* m_reduced (float, tuple)-Ilonchamber reading(s) at the reduced voltage.

36 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* mu (int)— The MU delivered to measure the reference reading. E.g. 200.

o ££ff (bool)— Whether the beam is FFF or flat.

* tissue_correction (float) — Correction value to calibration to, e.g., muscle. A

value of 1.0 means no correction (i.e. water).

pddx
The photon-only PDD(10) value.

kq
The chamber-specific beam quality correction factor.

dose _mu_10
c¢Gy/MU at a depth of 10cm.

dose_mu_dmax
c¢Gy/MU at a depth of dmax.

dose_mu_10_adjusted
The dose/mu at 10cm depth after adjustment.

dose_mu_dmax_adjusted
The dose/mu at dmax depth after adjustment.

publish_pdf (filename: str, notes: Optional[list] = None, open_file: bool = False, metadata: Op-

tional[dict] = None)

Publish (print) a PDF containing the analysis and quantitative results.

Parameters

e filename (str, file—-like object)— The file to write the results to.

* notes (str, list)— Any notes to be added to the report. If a string, adds everything
as one line. If a list, must be a list of strings; each string item will be a new line.

* open_file (bool)— Whether to open the file after creation. Will use the default PDF

program.

* metadata (dict)— Any data that should be appended to every page of the report. This
differs from notes in that metadata is at the top of every page while notes is at the bottom

of the report.
class pylinac.calibration.tg5l.TG51ElectronLegacy (* institution: str = ”, physicist:
str = 7, unit: str = ”, measure-
ment_date: str = 7, energy: int,

temp: float, press: float, chamber:
str, k_ecal: float, n_dw: float, elec-

trometer: str =", p_elec: float, clin-
ical_pdd: float, voltage_reference:
int, voltage_reduced: int,
m_reference: Union[float,
list, tuple, numpy.ndarray],
m_opposite: Union[float,
list, tuple, numpy.ndarray],
m_reduced: Union[float,
list, tuple, numpy.ndarray],
m_gradient: Union[float, list,
tuple, numpy.ndarray], cone:
str, mu: int, i_50: float, tis-
sue_correction: float = 1.0,

m_reference_adjusted=None)

5.4. Calibration (TG-51/TRS-398)

37

pylinac Documentation, Release 3.8.2

Bases: pylinac.calibration.tg51.TG51Base
Class for calculating absolute dose to water using a cylindrical chamber in an electron beam.
Parameters
e institution (str) - Institution name.
* physicist (str)— Physicist performing calibration.
* unit (str)— Unit name; e.g. TrueBeam].
* measurement_date (str)— Date of measurement. E.g. 10/22/2018.
* temp (float (17-27))- The temperature in degrees Celsius.

* press (float (91-111)) — The value of pressure in kPa. Can be converted from
mmHg and mbar; see mmHg2kPa () and mbar2kPa ().

* chamber (str)—- Chamber model; only for bookkeeping.
* n_dw (float)— NDW value in Gy/nC. Given by the calibration laboratory.

* k_ecal (float) — Kecal value which is chamber specific. This value is the major differ-
ence between the legacy class and modern class where no kecal is needed.

* p_elec (float) - Electrometer correction factor; given by the calibration laboratory.
* clinical_pdd (float)— The PDD used to correct the dose back to dref.

* voltage_reference (float) — Reference voltage; i.e. voltage when taking the cali-
bration measurement.

* voltage_reduced (float)— Reduced voltage; usually half of the reference voltage.
* m_reference (float, tuple)-lonchamber reading(s) at the reference voltage.

* m_opposite (float, tuple)-Ilonchamber reading(s) at the opposite voltage of ref-
erence.

* m_reduced (float, tuple)-Ilonchamber reading(s) at the reduced voltage.
* mu (int)— The MU delivered to measure the reference reading. E.g. 200.
* i_50 (float)— Depth of 50% ionization.

* tissue_correction (float) — Correction value to calibration to, e.g., muscle. A
value of 1.0 means no correction (i.e. water).

r 50
Depth of the 50% dose value.

dref
Depth of the reference point.

P9 _gr
Gradient factor

kq
The kQ value using classic TG-51

dose_mu_dref
c¢Gy/MU at the depth of Dref.

dose_mu_dmax
c¢Gy/MU at the depth of dmax.

38 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

dose_mu_dref_adjusted
c¢Gy/MU at the depth of Dref.

dose_mu_dmax_adjusted
c¢Gy/MU at the depth of dmax.

publish_pdf (filename: str, notes: Optional[list] = None, open_file: bool = False, metadata: Op-

tional[dict] = None)
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename (str, file-like object) - The file to write the results to.

* notes (str, 1list)-— Any notesto be added to the report. If a string, adds everything
as one line. If a list, must be a list of strings; each string item will be a new line.

* open_file (bool)— Whether to open the file after creation. Will use the default PDF
program.

* metadata (dict)— Any data that should be appended to every page of the report. This
differs from notes in that metadata is at the top of every page while notes is at the bottom

of the report.
class pylinac.calibration.tg5l.TG51ElectronModern (¥ institution: str = ”, physicist:
str = 7, unit: str = 7, measure-
ment_date: str = 7, energy: int,

temp: float, press: float, chamber:
str, n_dw: float, electrometer:

str = 7, p_elec: float, clini-
cal_pdd: float, voltage_reference:
int, voltage_reduced: int,
m_reference: Union[float,
list, tuple, numpy.ndarray],
m_opposite: Union[float,
list, tuple, numpy.ndarray],

m_reduced: Union[float, list, tuple,
numpy.ndarray], cone: str, mu: int,
i_50: float, tissue_correction: float,

m_reference_adjusted=None)
Bases: pylinac.calibration.tg51.TG51Base

Class for calculating absolute dose to water using a cylindrical chamber in an electron beam.

Warning: This class uses the values of Muir & Rogers. These values are likely to be included in the new
TG-51 addendum, but are not official. The results can be up to 1% different. Physicists should use their own
judgement when deciding which class to use. To use a manual kecal value, Pgradient and the classic TG-51
equations use the TG51ElectronLegacy class.

Parameters
e institution (str) - Institution name.
* physicist (str)— Physicist performing calibration.
* unit (str)— Unit name; e.g. TrueBeaml.

* measurement_date (str)— Date of measurement. E.g. 10/22/2018.

5.4. Calibration (TG-51/TRS-398) 39

pylinac Documentation, Release 3.8.2

* press (float)— The value of pressure in kPa. Can be converted from mmHg and mbar;
see mmHg2kPa () and mbar2kPa ().

* temp (float)— The temperature in Celsius.

* voltage_reference (int)— The reference voltage; i.e. the voltage for the calibration
reading (e.g. 300V).

* voltage_reduced (int) — The reduced voltage, usually a fraction of the reference
voltage (e.g. 150V).

* m_reference (array, float)- Thereading(s) of the chamber at reference voltage.
* m_reduced (array, float)-Thereading(s)of the chamber at the reduced voltage.

* m_opposite (array, float)- Thereading(s) of the chamber at the opposite voltage
from reference. Sign of the reading does not matter.

* k_elec (float) — The electrometer correction value given by the calibration laboratory.
jyh,lykllp;ljljuhyk nmdrzj

¢ chamber (str) - Ion chamber model.
* n_dw (float)— NDW value in Gy/nC
* p_elec (float) — Electrometer correction given by the calibration laboratory.
* clinical_pdd (float)— The PDD used to correct the dose back to dref.
* mu (int) - MU delivered.
* i_50 (float)— Depth of 50% ionization
* tissue_correction (float) — Correction value to calibration to, e.g., muscle. A
value of 1.0 means no correction (i.e. water).
r_ 50
Depth of the 50% dose value.

dref
Depth of the reference point.

kq
The kQ value using the updated Muir & Rogers values from their 2014 paper, equation 11, or classically
if kecal is passed.

dose_mu_dref
c¢Gy/MU at the depth of Dref.

dose_mu_dmax
c¢Gy/MU at the depth of dmax.

dose_mu_dref_adjusted
c¢Gy/MU at the depth of Dref.

dose_mu_dmax_adjusted
c¢Gy/MU at the depth of dmax.

publish_pdf (filename: str, notes: Optional[list] = None, open_file: bool = False, metadata: Op-

tional[dict] = None)
Publish (print) a PDF containing the analysis and quantitative results.

Parameters

e filename (str, file—-like object)— The file to write the results to.

40

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* notes (str, list)— Any notes tobe added to the report. If a string, adds everything
as one line. If a list, must be a list of strings; each string item will be a new line.

* open_file (bool)— Whether to open the file after creation. Will use the default PDF
program.

* metadata (dict)— Any data that should be appended to every page of the report. This
differs from notes in that metadata is at the top of every page while notes is at the bottom
of the report.

5.4.7 TRS-398 APl Documentation

pylinac.calibration.trs398.k_s (¥ voltage_reference: int, voltage_reduced: int, m_reference:
Unionf[float, list, tuple, numpy.ndarray], m_reduced:

Union[float, list, tuple, numpy.ndarray]) — float
Calculate the ion recombination effect using readings at two voltages. The voltages should have a ratio of 2, 2.5,

3,3.5,4,0r5.
Parameters

* voltage_reference (int)— The voltage at which calibration will be performed (e.g.
300V)

* voltage_reduced (int)— The voltage which is lower than reference (e.g. 150V)
* m_reference (array, float)- Thereading(s) at the reference voltage.
* m_reduced (array, float)- The reading(s) atthe reduced voltage.
Returns k_s — The ion recombination factor.
Return type float
Raises
* ValueError — If the voltage ratio is not valid.
* ValueError — If the calculated ks value is outside the range (1.0, 1.05).

pylinac.calibration.trs398.kq photon (* chamber: str, tpr: float) — float
Calculate the kQ factor for a photon beam given the chamber model and TPR20/10 using Table 6.1II. Linear
interpolation is used between given TPR ratios.

Parameters

e chamber (str)— Allowable chambers are those listed in Table 6.11I that are also Farmer-
type (e.g. Exradin A14 Farmer).

* tpr (float)— The ratio of measured TPR(20cm) / TPR(10cm). Note that this can also be
calculated from PDD. See tpr2010_from pdd2010().

Returns kQ — The calculated kQ given table Table 6.111
Return type float
Raises
* KeyError — If the passed chamber is not within the acceptable list.
* ValueError — If the TPR is not within the range defined by Table 6.111

pylinac.calibration.trs398.kq _electron (* chamber: str,r_50: float) — float
Calculate the kQ factor for an electron beam given the chamber model and R50 using Table 7.III. Linear inter-
polation is used between given R50 values.

5.4. Calibration (TG-51/TRS-398) 41

pylinac Documentation, Release 3.8.2

Parameters

* chamber (str) — The Farmer-type chambers listed in Table 7.1 (e.g. PTW
30004/30012).

* r_50 (float) - The depth of R50 in cm in water.
Returns kQ — The calculated kQ from Table 7.1I11
Return type float
Raises
* KeyError — If the passed chamber is not within the acceptable list.
* ValueError — If the R50 is not within the range defined by Table 7.111

pylinac.calibration.trs398.m_corrected (¥ m_reference, k_tp, k_elec, k_pol, k_s) — float
The fully corrected chamber reading.

Parameters
* m_reference (array, float)-The chamber reading(s) at the calibration position.
* k_tp (float)— Temperature/Pressure correction. See p_tp ().
* k_elec (float) — Electrometer correction; given by the calibration laboratory.
* k_pol (float) - Polarity correction. See p_pol ().
* k_s (float) - Ionrecombination correction. See k_ s ().
Returns m — The fully corrected chamber reading.

Return type float

class pylinac.calibration.trs398.TRS398Photon (* institution: str = 7, physicist: str =
”, unit: str = 7, measurement_date:
str = 7, electrometer: str = 7, setup:

str, chamber: str, n_dw: float, mu:
int, tpr2010: float, energy: int, [if-
bool, press: float, temp: float, volt-

age_reference: int, voltage_reduced:
int, m_reference: Union[tuple, float],
m_reduced: Union[tuple, float],

m_opposite: Union[tuple, float], k_elec:
float, clinical_pdd_zref: Optional[float] =
None, clinical_tmr_zref: Optional[float]

= None, tissue_correction: float = 1.0)
Bases: pylinac.calibration.trs398.TRS398Base

Calculation of dose to water at zmax and zref from a high energy photon beam. Setup can be SSD or SAD.
Parameters
* setup ({'SSD', 'SAD'})- The physical setup of the calibration.
e institution (str) - Institution name.
* physicist (str) — Physicist performing calibration.
* unit (str)— Unit name; e.g. TrueBeam|.
* measurement_date (str)— Date of measurement. E.g. 10/22/2018.

* chamber (str)— Farmer-type chamber model from Table 6.111.

42 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* n_dw (float)— NDw of the chamber given by the calibration laboratory.

* mu (float, int)-The number of MU given per reading

* energy (int)— Nominal energy of the linac in MV; e.g. 6. Bookkeeping only.
* ££f (bool)— Whether the beam is FFF or flat. Bookkeeping only.

* tpr2010 (float) — The value of TPR(20)/TPR(10). Can be derived from PDD; see
tpr2010_from pdd2010().

* press (float)— The value of pressure in kPa. Can be converted from mmHg and mbar;
see mmHg2kPa () and mbar2kPa ().

* temp (float)— The temperature in Celsius.

* voltage_reference (int)— The reference voltage; i.e. the voltage for the calibration
reading (e.g. 300V).

* voltage_reduced (int) — The reduced voltage, usually a fraction of the reference
voltage (e.g. 150V).

* m_reference (array, float)-The reading(s) of the chamber at reference voltage.
* m_reduced (array, float)-Thereading(s)of the chamber at the reduced voltage.

* m_opposite (array, float)- The reading(s)of the chamber at the opposite voltage
from reference. Sign of the reading does not matter.

* k_elec (float) - The electrometer correction value given by the calibration laboratory.

* clinical_pdd_zref (optional, float) - The PDD at the depth of calibration.
Use the actual percentage (e.g. 66.7 not 0.667). If not supplied the clinical_tmr_zref value
must be supplied.

* clinical_tmr_ zref (optional, float)- The TMR at the depth of calibration.
If not supplied the clinical_pdd_zref value must be supplied.

* tissue_correction (float) - The correction of calibration to a medium other than
water. Default value is 1 which is water. E.g. use 0.99 if calibrating to muscle.

kq
kQ of the chamber and TPR.

dose_mu_zmax
c¢Gy/MU at a depth of zmax.

dose_mu_zmax_adjusted
The dose/mu at dmax depth after adjustment.

publish_ pdf (filename: str, notes: Optionall[list] = None, open_file: bool = False, metadata: Op-

tional[dict] = None)
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename (str, file-like object) - The file to write the results to.

* notes (str, list)- Any notes to be added to the report. If a string, adds everything
as one line. If a list, must be a list of strings; each string item will be a new line.

* open_file (bool)— Whether to open the file after creation. Will use the default PDF
program.

5.4. Calibration (TG-51/TRS-398) 43

pylinac Documentation, Release 3.8.2

* metadata (dict)— Any data that should be appended to every page of the report. This
differs from notes in that metadata is at the top of every page while notes is at the bottom

of the report.
class pylinac.calibration.trs398.TRS398Electron (* institution: str = ”, physicist: str
= ", unit: str = ”, measurement_date:
str = 7, electrometer: str = 7, en-

ergy: str, cone: str, chamber: str,
n_dw: float, mu: int, i_50: float, press:
float, temp: float, voltage_reference:
int, voltage_reduced: int, m_reference:
tuple, m_reduced: tuple, m_opposite:
tuple, k_elec: float, clinical_pdd_zref:

float, tissue_correction: float = 1.0)
Bases: pylinac.calibration.trs398.TRS398Base

Calculation of dose to water at zmax and zref from a high energy electron beam.
Parameters
* institution (str) - Institution name.
* physicist (str)— Physicist performing calibration.
* unit (str)— Unit name; e.g. TrueBeaml.
* measurement_date (str)— Date of measurement. E.g. 10/22/2018.
* chamber (str)— Farmer-type chamber model from Table 6.111.
* n_dw (float)— NDw of the chamber given by the calibration laboratory.
* mu (float, int)-—The number of MU given per reading.
* i_50 (float)— The depth of ionization 50% in cm.

* press (float)— The value of pressure in kPa. Can be converted from mmHg and mbar;
see mmHg2kPa () and mbar2kPa ().

* temp (float)— The temperature in Celsius.

* voltage_reference (int) - The reference voltage; i.e. the voltage for the calibration
reading (e.g. 300V).

* voltage_reduced (int) — The reduced voltage, usually a fraction of the reference
voltage (e.g. 150V).

* m_reference (array, float)-The reading(s) of the chamber at reference voltage.
* m_reduced (array, float)- Thereading(s) of the chamber at the reduced voltage.

* m_opposite (array, float)- The reading(s)of the chamber at the opposite voltage
from reference. Sign of the reading does not matter.

* k_elec (float) - The electrometer correction value given by the calibration laboratory.

* pdd_zref (optional, float)- The PDD at the depth of calibration. Use the actual
percentage (e.g. 66.7 not 0.667). If not supplied the tmr_zref value should be supplied.

e tissue_correction (float) — The correction of calibration to a medium other than
water. Default value is 1 which is water. E.g. use 0.99 if calibrating to muscle.

r 50
The depth of R50 in cm, derived from 150.

44 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

zref

Depth of the reference point.

kq

kQ given the chamber and R50.

dose_mu_zmax
c¢Gy/MU at a depth of zmax.

dose_mu_zmax_adjusted
The dose/mu at dmax depth after adjustment.

publish_pdf (filename: str, notes: Optional[list] = None, open_file: bool = False, metadata: Op-

tional[dict] = None)

Publish (print) a PDF containing the analysis and quantitative results.

Parameters

5.5 Starshot

5.5.1 Overview

filename (str, file-like object)— The file to write the results to.

notes (str, list)-— Any notes to be added to the report. If a string, adds everything
as one line. If a list, must be a list of strings; each string item will be a new line.

open_file (bool)— Whether to open the file after creation. Will use the default PDF
program.

metadata (dict)— Any data that should be appended to every page of the report. This
differs from notes in that metadata is at the top of every page while notes is at the bottom
of the report.

The Starshot module analyses a starshot image made of radiation spokes, whether gantry, collimator, MLC or couch.
It is based on ideas from Depuydt et al and Gonzalez et al.

Features:

* Analyze scanned film images, single EPID images, or a set of EPID images - Any image that you can load

in can be analyzed, including 1 or a set of EPID DICOM images and films that have been digitally scanned.

¢ Any image size - Have machines with different EPIDs? Scanned your film at different resolutions? No problem.

* Dose/OD can be inverted - Whether your device/image views dose as an increase in value or a decrease, pylinac
will detect it and invert if necessary.

¢ Automatic noise detection & correction - Sometimes there’s dirt on the scanned film; sometimes there’s a

dead pixel on the EPID. Pylinac will detect these spurious noise signals and can avoid or account for them.

e Accurate, FWHM star line detection - Pylinac uses not simply the maximum value to find the center of a star
line, but analyzes the entire star profile to determine the center of the FWHM, ensuring small noise or maximum
value bias is avoided.

* Adaptive searching - If you passed pylinac a set of parameters and a good result wasn’t found, pylinac can
recover and do an adaptive search by adjusting parameters to find a “reasonable” wobble.

5.5. Starshot

45

http://iopscience.iop.org/0031-9155/57/10/2997
http://dx.doi.org/10.1118/1.1755491

pylinac Documentation, Release 3.8.2

5.5.2 Running the Demo

To run the Starshot demo, create a script or start an interpreter and input:

from pylinac import Starshot

Starshot.run_demo ()

Analyzed Image Wobble Circle
36.0

36.5
37.0

37.5

38.0

1270.51270.01269.51269.0

Results will be printed to the console and a matplotlib figure showing the analyzed starshot image will pop up:

Result: PASS

The minimum circle that touches all the star lines has a diameter of 0.381 mm.

The center of the minimum circle is at 1270.0, 1437.2

5.5.3 Image Acquisition

To capture starshot images, film is often used, but a sequence of EPID images can also work for collimator measure-
ments. Pylinac can automatically superimpose the images. See the literature mentioned in the Overview for more info
on acquisition.

46 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.5.4 Typical Use

The Starshot analysis can be run first by importing the Starshot class:

from pylinac import Starshot

A typical analysis sequence looks like so:

Load image(s) — Loading film or superimposed EPID DICOM images can be done by passing the file path or
by using a Ul to find and get the file. The code might look like any of the following:

star_img = "C:/QA Folder/gantry_starshot.tif"
mystar = Starshot (star_img)

Multiple images can be easily superimposed and used; e.g. collimator shots at various angles:

star_imgs = ['path/star0.tif', 'path/stard5.tif', 'path/star90.tif']
mystar = Starshot.from_multiple_images (star_imgs)

Analyze the image — After loading the image, all that needs to be done is analyze the image. You may optionally
pass in some settings:

mystar.analyze (radius=0.5, tolerance=0.8) # see API docs for more parameter info

View the results — Starshot can print out the summary of results to the console as well as draw a matplotlib
image to show the detected radiation lines and wobble circle:

print results to the console
print (mystar.results())

view analyzed image
mystar.plot_analyzed_image ()

Additionally, the data can be accessed through a convenient StarshotResults class which comes in useful
when using pylinac through an API or for passing data to other scripts/routines.

return a dataclass with introspection
data = mystar.results_data()
data.tolerance_mm

data.passed

return as a dict
data_dict = mystart.results_data(as_dict=True)
data_dict['passed']

Each subplot can be plotted independently as well:

just the wobble plot
mystar.plot_analyzed_subimage ('wobble')
just the zoomed-out plot
mystar.plot_analyzed_subimage ('whole')

Saving the images is also just as easy:

mystar.save_analyzed_image ('mystar.png')

You may also save to PDF:

5.5. Starshot 47

pylinac Documentation, Release 3.8.2

mystar.publish_pdf ('mystar.pdf'")

5.5.5 Algorithm

Allowances
* The image can be either inversion (radiation is darker or brighter).
* The image can be any size.
e The image can be DICOM (from an EPID) or most image formats (scanned film).
 If multiple images are used, they must all be the same size.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The image must have at least 6 spokes (3 angles).
* The center of the “star” must be in the central 1/3 of the image.

» The radiation spokes must extend to both sides of the center. I.e. the spokes must not end at the center of the
circle.

Pre-Analysis

¢ Check for image noise — The image is checked for unreasonable noise by comparing the min and max to the
1/99th percentile pixel values respectively. If there is a large difference then there is likely an artifact and a
median filter is applied until the min/max and 1/99th percentiles are similar.

* Check image inversion — The image is checked for proper inversion using histogram analysis.

* Set algorithm starting point — Unless the user has manually set the pixel location of the start point, it is
automatically found by summing the image along each axis and finding the center of the full-width, 80%-max
of each sum. The maximum value point is also located. Of the two points, the one closest to the center of the
image is chosen as the starting point.

Analysis

¢ Extract circle profile — A circular profile is extracted from the image centered around the starting point and at
the radius given.

* Find spokes — The circle profile is analyzed for peaks. Optionally, the profile is reanalyzed to find the center of
the FWHM. An even number of spokes must be found (1 for each side; e.g. 3 collimator angles should produce
6 spokes, one for each side of the CAX).

* Match peaks — Peaks are matched to their counterparts opposite the CAX to compose a line using a simple
peak number offset.

* Find wobble — Starting at the initial starting point, a Nelder-Mead gradient method is utilized to find the point
of minimum distance to all lines. If recursive is set to True and a “reasonable” wobble (<2mm) is not found
using the passes settings, the peak height and radius are iterated until a reasonable wobble is found.

Post-Analysis

* Check if passed — Once the wobble is calculated, it is tested against the tolerance given, and passes if below the
tolerance. If the image carried a pixel/mm conversion ratio, the tolerance and result are in mm, otherwise they
will be in pixels.

48 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.5.6 Troubleshooting
First, check the general Troubleshooting section, especially if an image won’t load. Specific to the starshot analysis,
there are a few things you can do.

* Set recursive to True - This easy step in analyze () allows pylinac to search for a reasonable wobble even if
the conditions you passed don’t for some reason give one.

¢ Make sure the center of the star is in the central 1/3 of the image - Otherwise, pylinac won’t find it.
¢ Make sure there aren’t egregious artifacts - Pin pricks can cause wild pixel values; crop them out if possible.

* Set ‘invert‘ to True - While right most of the time, it’s possible the inversion checker got it wrong. This would
look like peak locations in the “valley” regions of the image. If so, pass invert=True to the analyze method.

5.5.7 Benchmarking the Algorithm

With the image generator module we can create test images to test the starshot algorithm on known results. This is
useful to isolate what is or isn’t working if the algorithm doesn’t work on a given image and when commissioning
pylinac.

Perfect shot

Note: Due to the rounding of pixel positions of the star lines an absolutely perfect (0.0000mm wobble) is not
achievable. The uncertainty of the algorithm is ~0.05mm.

Let’s create a perfect irradiation of a starshot pattern:

from scipy import ndimage

import pylinac
from pylinac.core.image generator import GaussianFilterLayer, FilteredFieldLayer,
—AS1200Image, RandomNoiselLayer

star_path = 'perfect_starshot.dcm'’
asl1l200 = AS1200Image ()
for _ in range(6):
asl200.add_layer (FilteredFieldLayer ((270, 5), alpha=0.5))
asl200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')

asl1l200.add_layer (GaussianFilterLayer (sigma_mm=3))
asl1l200.generate_dicom(file_out_name=star_path)

analyze it

star = pylinac.Starshot (star_path)
star.analyze ()

print (star.results())
star.plot_analyzed_image ()

with an output of:

Result: PASS

The minimum circle that touches all the star lines has a diameter of 0.045 mm.

(continues on next page)

5.5. Starshot 49

pylinac Documentation, Release 3.8.2

Analyzed Image Wobble Circle

639.7 639.6 639.5 639.4

50 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

The center of the minimum circle is at 639.5, 639.5

Note that there is still an identified wobble of ~0.045mm due to pixel position rounding of the generated image star
lines. The center of the star is dead on at 639.5 (AS1200 image of shape 1278 and going to the middle of the pixel).

We can also evaluate the effect of changing the radius:

from scipy import ndimage

import pylinac
from pylinac.core.image generator import GaussianFilterLayer, FilteredFieldLayer,
—~AS1200Image, RandomNoiselLayer

star_path = 'perfect_starshot.dcm'
asl1l200 = AS1200Image ()
for _ in range(6):
asl200.add_layer (FilteredFieldLayer ((270, 5), alpha=0.5))
asl200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')

asl1l200.add_layer (GaussianFilterLayer (sigma_mm=3))
asl200.generate_dicom(file_out_name=star_path)

analyze it

star = pylinac.Starshot (star_path)
star.analyze (radius=0.6) # radius changed
print (star.results())
star.plot_analyzed_image ()

which results in:

Result: PASS

The minimum circle that touches all the star lines has a diameter of 0.036 mm.

The center of the minimum circle is at 639.5, 639.5

The center hasn’t moved but we do have a diameter of ~0.03mm now. Again, this is a limitation of both the algorithm
and image generation.

Offset

We can also generate an offset starshot:

Note: This image is completely generated and depending on the angle and number of spokes, this result may change
due to the fragility of rotating the image.

from scipy import ndimage

import pylinac
from pylinac.core.image generator import GaussianFilterLayer, FilteredFieldLayer,
—~AS1200Image, RandomNoiseLayer

(continues on next page)

5.5. Starshot 51

pylinac Documentation, Release 3.8.2

Analyzed Image Wobble Circle

639.6 639.5 639.4

52 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

star_path = 'offset_starshot.dcm'
asl200 = AS1200Image ()
for _ in range (6):
asl1l200.add_layer (FilteredFieldLayer ((270, 5), alpha=0.5, cax_offset_mm=(1, 1)))
asl200.image = ndimage.rotate (asl200.image, 60, reshape=False, mode='nearest')
asl200.add_layer (GaussianFilterLayer (sigma_mm=3))
asl200.generate_dicom(file_out_name=star_path)

analyze it

star = pylinac.Starshot (star_path)
star.analyze ()

print (star.results())
star.plot_analyzed_image ()

Analyzed Image Wobble Circle

639.45639.42639.40639.37639.350

with an output of:

Result: FAIL

The minimum circle that touches all the star lines has a diameter of 1.035 mm.

The center of the minimum circle is at 637.8, 633.3

Note that we still have the 0.035mm error from the algorithm uncertainty but that we have caught the 1mm offset
appropriately.

5.5. Starshot 53

pylinac Documentation, Release 3.8.2

5.5.8 APl Documentation

class pylinac.starshot.Starshot (filepath: Union[str, BinarylO], **kwargs)

Bases: object

Class that can determine the wobble in a “starshot” image, be it gantry, collimator, couch or MLC. The image

can be a scanned film (TIF, JPG, etc) or a sequence of EPID DICOM images.
image
Type Image
circle_profile
Type StarProfile
lines
Type LineManager
wobble
Type Wobble
tolerance

Type Tolerance

Examples

Run the demo:

>>> Starshot.run_demo ()

Typical session:

>>> img_path = r"C:/QA/Starshots/Coll. jpeg"

>>> mystar = Starshot (img_path, dpi=105, sid=1000)
>>> mystar.analyze ()

>>> print (mystar.results())

>>> mystar.plot_analyzed_image ()

Parameters
* filepath — The path to the image file.
* kwargs — Passed to 1oad ().
classmethod from url (url: str, **kwargs)
Instantiate from a URL.
Parameters
e url (str)— URL of the raw file.
* kwargs —Passed to 1oad ().

classmethod from demo_image ()
Construct a Starshot instance and load the demo image.

classmethod from multiple_images (filepath_list: list, **kwargs)
Construct a Starshot instance and load in and combine multiple images.

54

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Parameters

filepath_list (iterable)— An iterable of file paths to starshot images that are to
be superimposed.

kwargs — Passed to 1oad multiples ().

classmethod from_zip (zip_file: str, **kwargs)
Construct a Starshot instance from a ZIP archive.

Parameters

zip_file (str) - Points to the ZIP archive. Can contain a single or multiple images. If
multiple images the images are combined and thus should be from the same test sequence.

kwargs — Passed to load multiples ().

analyze (radius: float = 0.85, min_peak_height: float = 0.25, tolerance: float = 1.0, start_point:
Union[pylinac.core.geometry.Point, tuple, None] = None, fwhm: bool = True, recursive: bool

= True, invert: bool = False)
Analyze the starshot image.

Analyze finds the minimum radius and center of a circle that touches all the lines (i.e. the wobble circle
diameter and wobble center).

Parameters

radius (float, optional) - Distance in % between starting point and closest im-
age edge; used to build the circular profile which finds the radiation lines. Must be between
0.05 and 0.95.

min_peak_height (float, optional)-— The percentage minimum height a peak
must be to be considered a valid peak. A lower value catches radiation peaks that vary in
magnitude (e.g. different MU delivered or gantry shot), but could also pick up noise. If
necessary, lower value for gantry shots and increase for noisy images.

tolerance (int, float, optional)— The tolerance in mm to test against for a
pass/fail result.

start_point (2-element iterable, optional)- The point where the algo-
rithm should center the circle profile, given as (x-value, y-value). If None (default), will
search for a reasonable maximum point nearest the center of the image.

fwhm (boo1l) — If True (default), the center of the FWHM of the spokes will be deter-
mined. If False, the peak value location is used as the spoke center.

Note: In practice, this ends up being a very small difference. Set to false if peak locations
are offset or unexpected.

recursive (bool) — If True (default), will recursively search for a “reasonable” wob-
ble, meaning the wobble radius is <3mm. If the wobble found was unreasonable, the
minimum peak height is iteratively adjusted from low to high at the passed radius. If for
all peak heights at the given radius the wobble is still unreasonable, the radius is then it-
erated over from most distant inward, iterating over minimum peak heights at each radius.
If False, will simply return the first determined value or raise error if a reasonable wobble
could not be determined.

Warning: It is strongly recommended to leave this setting at True.

5.5. Starshot

55

pylinac Documentation, Release 3.8.2

* invert (bool)— Whether to force invert the image values. This should be set to True if
the automatically-determined pylinac inversion is incorrect.

Raises RuntimeError —If a reasonable wobble value was not found.

passed
Boolean specifying whether the determined wobble was within tolerance.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_list (bool) — Whether to return as a list of strings vs single string. Pretty
much for internal usage.

results_data (as_dict: bool = False) — Union[pylinac.starshot.StarshotResults, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

plot_analyzed_ image (show: bool = True, **plt_kwargs)
Draw the star lines, profile circle, and wobble circle on a matplotlib figure.

Parameters
* show (boo1l)— Whether to actually show the image.

* plt_kwargs (dict) — Keyword args passed to the plt.subplots() method. Allows one
to set things like figure size.

plot_analyzed_subimage (subimage: str = 'wobble’, ax: Optional[matplotlib.axes._axes.Axes] =

None, show: bool = True, **plt_kwargs)
Plot a subimage of the starshot analysis. Current options are the zoomed out image and the zoomed in

image.
Parameters

* subimage (str) — If ‘wobble’, will show a zoomed in plot of the wobble circle. Any
other string will show the zoomed out plot.

* ax (None, matplotlib Axes) - If None (default), will create a new figure to plot
on, otherwise plot to the passed axes.

* show (bool)— Whether to actually show the image.

* plt_kwargs (dict) — Keyword args passed to the plt.figure() method. Allows one to
set things like figure size. Only used if ax is not passed.

save_analyzed_image (filename: str, **kwargs)
Save the analyzed image plot to a file.

Parameters

e filename (str, IO stream) - The filename to save as. Format is deduced from
string extention, if there is one. E.g. ‘mystar.png’ will produce a PNG image.

* kwargs — All other kwargs are passed to plt.savefig().

save_analyzed_subimage (filename: str, subimage: str = 'wobble’, **kwargs)
Save the analyzed subimage to a file.

Parameters
e filename (str, file-object)— Where to save the file to.

* subimage (str) — If ‘wobble’, will show a zoomed in plot of the wobble circle. Any
other string will show the zoomed out plot.

* kwargs — Passed to matplotlib.

56 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

publish_pdf (filename: Union[str, BinarylO], notes: Union[str, List[str], None] = None, open_file:
bool = False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] =

None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: —————— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

static run_demo ()
Demonstrate the Starshot module using the demo image.

class pylinac.starshot.StarshotResults (folerance_mm: float, circle_diameter_mm: float,
circle_radius_mm: float, passed: bool, cir-

cle_center_x_y: Tuple[float, float])
Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
tolerance_mm = None
circle_diameter_mm = None
circle_radius_mm = None

passed = None

circle_center _x y = None

class pylinac.starshot.StarProfile (image, start_point, radius, min_peak_height, fwhm)
Bases: pylinac.core.profile.CollapsedCircleProfile

Class that holds and analyzes the circular profile which finds the radiation lines.

get_peaks (min_peak_height, min_peak_distance=0.02, fwhm=True)
Determine the peaks of the profile.

class pylinac.starshot.Wobble (center_point=None, radius=None)
Bases: pylinac.core.geometry.Circle

A class that holds the wobble information of the Starshot analysis.
radius_mm
Type The radius of the Circle in mm.

diameter_mm
Diameter of the wobble in mm.

class pylinac.starshot.LineManager (points: List[pylinac.core.geometry.Point])
Bases: object

5.5. Starshot 57

pylinac Documentation, Release 3.8.2

Manages the radiation lines found.
Parameters points — The peak points found by the StarProfile
construct_rad lines (points: List[pylinac.core.geometry.Point])

Find and match the positions of peaks in the circle profile (radiation lines) and map their positions to
the starshot image.

Radiation lines are found by finding the FWHM of the radiation spokes, then matching them to form lines.
Returns lines — A list of Lines (radiation lines) found.
Return type list
See also:
Starshot.analyze ()
core.profile.CircleProfile.find_FWXM peaks () min_peak_distance parameter info.
geometry.Line () returning object

match_points (points: List[pylinac.core.geometry.Point])
Match the peaks found to the same radiation lines.

Peaks are matched by connecting the existing peaks based on an offset of peaks. E.g. if there are 12 peaks,
there must be 6 radiation lines. Furthermore, assuming star lines go all the way across the CAX, the 7th
peak will be the opposite peak of the 1st peak, forming a line. This method is robust to starting points far
away from the real center.

plot (axis: matplotlib.axes._axes.Axes)
Plot the lines to the axis.

5.6 VMAT

5.6.1 Overview

The VMAT module consists of the class VMAT, which is capable of loading an EPID DICOM Open field image and
MLC field image and analyzing the images according to the Varian RapidArc QA tests and procedures, specifically
the Dose-Rate & Gantry-Speed (DRGS) and Dose-Rate & MLC speed (DRMLC) tests.

Features:
* Do both tests - Pylinac can handle either DRGS or DRMLC tests.

¢ Automatic offset correction - Older VMAT tests had the ROIs offset, newer ones are centered. No worries,
pylinac finds the ROIs automatically.

* Automatic open/DMLC identification - Pass in both images—don’t worry about naming. Pylinac will automat-
ically identify the right images.

Note: There are two classes in the VMAT module: DRGS and DRMLC. Each have the exact same methods. Anytime
one class is used here as an example, the other class can be used the same way.

58 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.6.2 Running the Demos

For this example we will use the DRGS class:

from pylinac import DRGS
DRGS. run_demo ()

Median Profiles

1.0
0.8 1
Open DMLC)
Z
a
n 0.6
()
o
©
[V}
N
€ 0.4-
S
=2
0.2 1
—— DMLC
0.0 —— Open
0 200 400

Results will be printed to the console and a figure showing both the Open field and MLC field image will pop up:

Dose Rate & Gantry Speed

Test Results (Tol. +/-1.5%): PASS
Max Deviation: 1.01%

Absolute Mean Deviation: 0.459%

5.6.3 Image Acquisition

If you want to perform these specific QA tests, you’ll need DICOM plan files that control the linac precisely to deliver
the test fields. These can be downloaded from my.varian.com. Once logged in, search for RapidArc and you should
see two items called “RapidArc QA Test Procedures and Files for TrueBeam”; there will be a corresponding one for
C-Series. Use the RT Plan files and follow the instructions, not including the assessment procedure, which is the point
of this module. Save & move the VMAT images to a place you can use pylinac.

5.6. VMAT 59

pylinac Documentation, Release 3.8.2

5.6.4 Typical Use

The VMAT QA analysis follows what is specified in the Varian RapidArc QA tests and assumes your tests will run the
exact same way. Import the appropriate class:

from pylinac import DRGS, DRMLC

The minimum needed to get going is to:

* Load images — Loading the EPID DICOM images into your VMAT class object can be done by passing the file
paths, passing a ZIP archive, or passing a URL:

open_img = "C:/QA Folder/VMAT/open_field.dcm"

dmlc_img = "C:/QA Folder/VMAT/dmlc_field.dcm"

mydrgs = DRGS (image_paths=(open_img, dmlc_img)) # use the DRMLC class the exact,,
—same way

from zip
mydrmlc = DRMLC.from_zip(r'C:/path/to/zip.zip")

from a URL
mydrgs = DRGS.from_url ('http://myserver.org/vmat.zip'")

Finally, if you don’t have any images, you can use the demo ones provided:

mydrgs = DRGS.from_demo_images ()
mydrmlc = DRMLC.from_demo_images ()

* Analyze the images — Once the images are loaded, tell the class to analyze the images. See the Algorithm
section for details on how this is done. Tolerance can also be passed and has a default value of 1.5%:

mydrgs.analyze (tolerance=1.5)

* View/Save the results — The VMAT module can print out the summary of results to the console as well as draw
a matplotlib image to show where the segments were placed and their values:

print results to the console
print (mydrgs.results())

view analyzed images
mydrgs.plot_analyzed_image ()

PDF reports can also be generated:

myvmat .publish_pdf ('drgs.pdf')

5.6.5 Customizing the analysis

You can alter both the segment size and segment positions as desired.

To change the segment size:

drgs = DRGS.from_demo_image ()

drgs.analyze(..., segment_size_mm=(10, 150)) # ROI segments will now be 10mm wide by,
—150mm tall

same story for DRMLC

60 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Median Profiles

1.0 1
0.8
I
Open DMLC)
Z
a
n 0.6
(O]
o
©
()
N
£ 0.4
S
=2
0.2
—— DMLC
0.0 —— Open
I]
0 200 400

5.6. VMAT 61

pylinac Documentation, Release 3.8.2

To change the x-positions of the ROI segments, the class property must be changed. This is different behavior because
by default the x-positions are different for the DRGS and DRMLC test:

from pylinac import DRGS, DRMLC

DRGS.SEGMENT_X_POSITIONS MM = (-100, -80, ...)
proceed as normal
my_drgs = DRGS(...)

DRMLC must be addressed separately
DRMLC.SEGMENT_X_ POSITIONS_MM = (-40, -10, 10, 40)
my_drmlc = DRMLC(...)

5.6.6 Accessing Data

Changed in version 3.0.

Using the VMAT module in your own scripts? While the analysis results can be printed out, if you intend on using
them elsewhere (e.g. in an API), they can be accessed the easiest by using the results data () method which
returns a VMATResult instance.

Note: While the pylinac tooling may change under the hood, this object should remain largely the same and/or
expand. Thus, using this is more stable than accessing attrs directly.

Continuing from above:

data = my_drmlc.results_datal()
data.test_type

data.passed

and more

return as a dict
data_dict = my_drmlc.results_data(as_dict=True)
data_dict|['test_type']

5.6.7 Algorithm

The VMAT analysis algorithm is based on the Varian RapidArc QA Test Procedures for C-Series and Truebeam.
Two tests (besides Picket Fence, which has its own module) are specified. Each test takes 10x0.5cm samples, each
corresponding to a distinct section of radiation. A corrected reading of each segment is made, defined as: Mo (2) =

%‘féf)) * 100. The reading deviation of each segment is calculated as: Mycyiation () = %{:frz) % 100 — 100,

where M., is the average of all segments.
The algorithm works like such:
Allowances
» The images can be acquired at any SID.
* The images can be acquired with any EPID (aS500, aS1000, aS1200).

Restrictions

62 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The tests must be delivered using the DICOM RT plan files provided by Varian which follow the test layout of
Ling et al.

* The images must be acquired with the EPID.
Pre-Analysis

* Determine image scaling — Segment determination is based on offsets from the center pixel of the image.
However, some physicists use 150 cm SID and others use 100 cm, and others can use a clinical setting that
may be different than either of those. To account for this, the SID is determined and then scaling factors are
determined to be able to perform properly-sized segment analysis.

Analysis

Note: Calculations tend to be lazy, computed only on demand. This represents a nominal analysis where all calcula-
tions are performed.

* Calculate sample boundaries — Segment positions are always the same within the image. The x-positions are
based on the FWHM of the detected field. This allows for old and new style tests that have an x-offset from
each other. These values are then scaled with the image scaling factor determined above.

 Calculate the corrected reading — For each segment, the mean pixel value is determined for both the open and
DMLC image. These values are used to determine the corrected reading: M -

 Calculate sample and segment ratios — The sample values of the DMLC field are divided by their correspond-
ing open field values.

¢ Calculate segment deviations — Segment deviation is then calculated once all the corrected readings are deter-
mined. The average absolute deviation is also calculated.

Post-Analysis

* Test if segments pass tolerance — Each segment is checked to see if it was within the specified tolerance. If any
samples fail, the whole test is considered failing.

5.6.8 Benchmarking the Algorithm

With the image generator module we can create test images to test the VMAT algorithm on known results. This is
useful to isolate what is or isn’t working if the algorithm doesn’t work on a given image and when commissioning
pylinac.

Note: The below examples are for the DRMLC test but can equally be applied to the DRGS tests as well.

Perfect Fields

In this example, we generate a perfectly flat set of images.

The script will generate the files, but you can also download them here: perfect_open_drmlc.dcm
perfect_dmlc_drmlc.dcm.

5.6. VMAT 63

pylinac Documentation, Release 3.8.2

import pylinac
from pylinac.core.image generator import GaussianFilterlLayer, PerfectFieldLayer,
—AS1200Image

open image

open_path = 'perfect_open_drmlc.dcm'

asl200 = AS1200Image ()

asl200.add_layer (PerfectFieldLayer (field_size_mm=(150, 110), cax_offset_mm=(0, 5)))
asl200.add_layer (GaussianFilterLayer (sigma_mm=2))
asl200.generate_dicom(file_out_name=open_path)

DMLC image
dmlc_path = 'perfect_dmlc_drmlc.dcm'
asl1l200 = AS1200Image ()
for offset in (-40, -10, 20, 50):

asl200.add_layer (PerfectFieldLayer ((150, 20), cax_offset_mm=(0, offset)))
asl1l200.add_layer (GaussianFilterLayer (sigma_mm=2))
asl200.generate_dicom(file_out_name=dmlc_path)

analyze it

vmat = pylinac.DRMLC (image_paths= (open_path, dmlc_path))
vmat.analyze ()

print (vmat.results())

vmat .plot_analyzed_image ()

Median Profiles

1.0

0.8
Open DMLC

o
o)

Normalized Response
o©
S

0.2

—— DMLC

0.0 +—— = Open

I]
T

0 500 1000

64 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

with output:

Dose Rate & MLC Speed

Test Results (Tol. +/-1.5%): PASS
Max Deviation: 0.0%

Absolute Mean Deviation: 0.0%

Noisy, Realistic

We now add a horn effect and random noise to the data:

import pylinac
from pylinac.core.image generator import GaussianFilterLayer, FilteredFieldLayer,
—AS1200Image, RandomNoiseLayer

open image

open_path = 'noisy_open_drmlc.dcm'

asl1l200 = AS1200Image ()

asl1l200.add_layer (FilteredFieldLayer (field_size_mm= (150, 110), cax_offset_mm=(0, 5)))
asl200.add_layer (GaussianFilterLayer (sigma_mm=2))

asl1l200.add_layer (RandomNoiseLayer (sigma=0.03))
asl1l200.generate_dicom(file_out_name=open_path)

DMLC image
dmlc_path = 'noisy_dmlc_drmlc.dcm'’
asl1l200 = AS1200Image ()
for offset in (-40, -10, 20, 50):
asl200.add_layer (FilteredFieldLayer ((150, 20), cax_offset_mm=(0, offset)))
asl200.add_layer (GaussianFilterLayer (sigma_mm=2))
asl1l200.add_layer (RandomNoiseLayer (sigma=0.03))
asl1l200.generate_dicom(file_out_name=dmlc_path)

analyze it

vmat = pylinac.DRMLC (image_paths=(open_path, dmlc_path))
vmat.analyze ()

print (vmat.results())

vmat .plot_analyzed_image ()

with output:

Dose Rate & MLC Speed
Test Results (Tol. +/-1.5%): PASS
Max Deviation: 0.0332%
Absolute Mean Deviation: 0.0257%

Erroneous data

Let’s now get devious and randomly adjust the height of each ROI (effectively changing the apparent MLC speed):

Note: Due to the purposely random nature shown below, this exact result is likely not reproducible, nor was it
intended to be. To get reproducible behavior, use numpy with a seed value.

5.6. VMAT 65

pylinac Documentation, Release 3.8.2

Median Profiles

1.0
0.8
Open DMLC
()
1]
C
o
2 0.6
()
4
©
()
N
@©
£ 0.4
o
=2
0.2
—— DMLC
0.0 Open
I]
0 500 1000

66 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

import random

import pylinac
from pylinac.core.image generator import GaussianFilterlLayer, FilteredFieldLayer,
—AS1200Image, RandomNoiselLayer

open image

open_path = 'noisy_open_drmlc.dcm'

asl1l200 = AS1200Image ()

asl200.add_layer (FilteredFieldLayer (field_size_mm= (150, 110), cax_offset_mm=(0, 5)))
asl1l200.add_layer (GaussianFilterLayer (sigma_mm=2))

asl1200.add_layer (RandomNoiseLayer (sigma=0.03))
asl200.generate_dicom(file_out_name=open_path)

DMLC image
dmlc_path = 'noisy_dmlc_drmlc.dcm'
asl1l200 = AS1200Image ()
for offset in (-40, -10, 20, 50):
asl200.add_layer (FilteredFieldLayer ((150, 20), cax_offset_mm=(0, offset),
—alpha=random.uniform(0.93, 1)))
asl200.add_layer (GaussianFilterLayer (sigma_mm=2))
asl200.add_layer (RandomNoiseLayer (sigma=0.03))
asl1l200.generate_dicom(file_out_name=dmlc_path)

analyze it

vmat = pylinac.DRMLC (image_paths=(open_path, dmlc_path))
vmat.analyze ()

print (vmat.results())

vmat .plot_analyzed_image ()

with an output of:

Dose Rate & MLC Speed
Test Results (Tol. +/-1.5%): FAIL
Max Deviation: 2.12%

Absolute Mean Deviation: 1.13%

5.6.9 API Documentation

Main classes

These are the classes a typical user may interface with.

class pylinac.vmat .DRGS (image_paths: Sequence[Union[str, BinarylO]])
Bases: pylinac.vmat.VMATBase

Class representing a Dose-Rate, Gantry-speed VMAT test. Will accept, analyze, and return the results.

Parameters image_paths (iterable (list, tuple, etc)) — A sequence of paths to
the image files.

static run_demo ()
Run the demo for the Dose Rate & Gantry Speed test.

analyze (tolerance: Unionffloat, int] = 1.5, segment_size_mm: Tuple = (5, 100))
Analyze the open and DMLC field VMAT images, according to 1 of 2 possible tests.

Parameters

5.6. VMAT 67

pylinac Documentation, Release 3.8.2

Median Profiles

1-0 w
0.8
Open DMLC
()
1]
C
o
2 0.6
()
4
©
()
N
@©
£ 0.4
o
=2
0.2
—— DMLC
0.0 —-——J— Open
I]
0 500 1000

68 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* tolerance (float, int, optional)- The tolerance of the sample deviations in
percent. Default is 1.5. Must be between 0 and 8.

* segment_size mm(tuple (int, int))-The (width, height) of the ROI segments
in mm.

avg_abs_r deviation
Return the average of the absolute R_deviation values.

avg_r_deviation
Return the average of the R_deviation values, including the sign.

classmethod from_demo_images ()
Construct a VMAT instance using the demo images.

classmethod from_url (url: str)
Load a ZIP archive from a URL. Must follow the naming convention.

Parameters url (str)— Must point to a valid URL that is a ZIP archive of two VMAT images.

classmethod from_zip (path: str)
Load VMAT images from a ZIP file that contains both images. Must follow the naming convention.

Parameters path (str) — Path to the ZIP archive which holds the VMAT image files.

max_r deviation
Return the value of the maximum R_deviation segment.

plot_analyzed_image (show: bool = True, **plt_kwargs)
Plot the analyzed images. Shows the open and dmlc images with the segments drawn; also plots the median
profiles of the two images for visual comparison.

Parameters
* show (boo1l)— Whether to actually show the image.

* plt_kwargs (dict) — Keyword args passed to the plt.subplots() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file—-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: ———— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

r devs
Return the deviations of all segments as an array.

results () — str
A string of the summary of the analysis results.

Returns The results string showing the overall result and deviation statistics by segment.

5.6. VMAT 69

pylinac Documentation, Release 3.8.2

Return type str

results_data (as_dict=False) — Union[pylinac.vmat.VMATResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

class pylinac.vmat .DRMLC (image_paths: Sequence[Union[str, BinarylO]])
Bases: pylinac.vmat.VMATBase

Class representing a Dose-Rate, MLC speed VMAT test. Will accept, analyze, and return the results.

Parameters image_paths (iterable (list, tuple, etc)) — A sequence of paths to
the image files.

static run_demo ()
Run the demo for the MLC leaf speed test.

analyze (tolerance: Union[float, int] = 1.5, segment_size_mm: Tuple = (5, 100))
Analyze the open and DMLC field VMAT images, according to 1 of 2 possible tests.

Parameters

* tolerance (float, int, optional)— The tolerance of the sample deviations in
percent. Default is 1.5. Must be between 0 and 8.

* segment_size mm(tuple (int, int))-The (width, height) of the ROI segments
in mm.

avg_abs_r_deviation
Return the average of the absolute R_deviation values.

avg_r_deviation
Return the average of the R_deviation values, including the sign.

classmethod from_demo_images ()
Construct a VMAT instance using the demo images.

classmethod from_ url (url: str)
Load a ZIP archive from a URL. Must follow the naming convention.

Parameters url (str)—Must point to a valid URL that is a ZIP archive of two VMAT images.

classmethod from_zip (path: str)
Load VMAT images from a ZIP file that contains both images. Must follow the naming convention.

Parameters path (str) — Path to the ZIP archive which holds the VMAT image files.

max_r deviation
Return the value of the maximum R_deviation segment.

plot_analyzed_image (show: bool = True, **plt_kwargs)
Plot the analyzed images. Shows the open and dmlc images with the segments drawn; also plots the median
profiles of the two images for visual comparison.

Parameters
* show (bool)— Whether to actually show the image.

* plt_kwargs (dict) — Keyword args passed to the plt.subplots() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters

70 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: ———— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

r devs
Return the deviations of all segments as an array.

results () — str
A string of the summary of the analysis results.

Returns The results string showing the overall result and deviation statistics by segment.
Return type str

results_data (as_dict=False) — Union[pylinac.vmat.VMATResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

class pylinac.vmat.VMATResult (fest_type: str, tolerance_percent: float, max_deviation_percent:
float, abs_mean_deviation: float, passed: bool, segment_data: It-

erable[pylinac.vmat.SegmentResult])
Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
test_type = None

tolerance_percent = None
max_deviation percent = None
abs_mean_deviation = None

passed = None

segment_data = None

class pylinac.vmat.SegmentResult (passed: bool, x_position_mm: float, r_corr: float, r_dev:
float, center_x_y: float)
Bases: object

An individual segment/ROI result
passed = None
X_position_mm = None
r_corr = None

r_dev = None

center_x y = None

5.6. VMAT 71

pylinac Documentation, Release 3.8.2

Supporting Classes

You generally won’t have to interface with these unless you’re doing advanced behavior.

class pylinac.vmat .VMATBase (image_paths: Sequence[Union[str, BinarylO]])
Bases: object

Parameters image_paths (iterable (list, tuple, etc)) — A sequence of paths to
the image files.

classmethod from_ url (url: str)
Load a ZIP archive from a URL. Must follow the naming convention.

Parameters url (str)—Must point to a valid URL that is a ZIP archive of two VMAT images.

classmethod from_zip (path: str)
Load VMAT images from a ZIP file that contains both images. Must follow the naming convention.

Parameters path (st r) — Path to the ZIP archive which holds the VMAT image files.

classmethod from demo_images ()
Construct a VMAT instance using the demo images.

analyze (tolerance: Union[float, int] = 1.5, segment_size_mm: Tuple = (5, 100))
Analyze the open and DMLC field VMAT images, according to 1 of 2 possible tests.

Parameters

* tolerance (float, int, optional)- The tolerance of the sample deviations in
percent. Default is 1.5. Must be between 0 and 8.

* segment_size mm(tuple (int, int))-The (width, height) of the ROI segments
in mm.

results () — str
A string of the summary of the analysis results.

Returns The results string showing the overall result and deviation statistics by segment.
Return type str

results_data (as_dict=False) — Union[pylinac.vmat.VMATResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

r_devs
Return the deviations of all segments as an array.

avg_abs_r_deviation
Return the average of the absolute R_deviation values.

avg_r_deviation
Return the average of the R_deviation values, including the sign.

max_r_deviation
Return the value of the maximum R_deviation segment.

plot_analyzed_ image (show: bool = True, **plt_kwargs)
Plot the analyzed images. Shows the open and dmlc images with the segments drawn; also plots the median
profiles of the two images for visual comparison.

Parameters

* show (bool)— Whether to actually show the image.

72 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* plt_kwargs (dict) — Keyword args passed to the plt.subplots() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) - Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: ————— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

class pylinac.vmat.Segment (center_point: pylinac.core.geometry. Point, open_image:
pylinac.core.image.DicomImage, dmlc_image:

pylinac.core.image.DicomImage, tolerance: Union[float, int])
Bases: pylinac.core.geometry.Rectangle

A class for holding and analyzing segment data of VMAT tests.

For VMAT tests, there are either 4 or 7 ‘segments’, which represents a section of the image that received
radiation under the same conditions.

r_dev
The reading deviation (R_dev) from the average readings of all the segments. See RTD for equation info.

Type float

r_corr
The corrected reading (R_corr) of the pixel values. See RTD for explanation and equation info.

Type float

passed
Specifies where the segment reading deviation was under tolerance.

Type boolean

r_corr
Return the ratio of the mean pixel values of DMLC/OPEN images.

bl corner
The location of the bottom left corner.

br_corner
The location of the bottom right corner.

passed
Return whether the segment passed or failed.

plot2axes (axes: matplotlib.axes._axes.Axes, edgecolor: str = ’black’, angle: float = 0.0, fill: bool =
False, alpha: float = 1, facecolor: str = ’g’, label=None)
Plot the Rectangle to the axes.

Parameters

5.6. VMAT 73

pylinac Documentation, Release 3.8.2

* axes (matplotlib.axes.Axes)— An MPL axes to plot to.

* edgecolor (str) - The color of the circle.

* angle (float)— Angle of the rectangle.

e £i11 (bool)— Whether to fill the rectangle with color or leave hollow.

tl_corner
The location of the top left corner.

tr_corner
The location of the top right corner.

get_bg color () — str
Get the background color of the segment when plotted, based on the pass/fail status.

5.7 CatPhan

5.7.1 Overview

The CT module automatically analyzes DICOM images of a CatPhan 504, 503, 600, Quart DVT, or ACR phantoms
acquired when doing CBCT or CT quality assurance. It can load a folder or zip file that the images are in and automat-
ically correct for translational and rotational errors. It can analyze the HU regions and image scaling (CTP404), the
high-contrast line pairs (CTP528) to calculate the modulation transfer function (MTF), the HU uniformity (CTP486),
and Low Contrast (CTP515) on the corresponding slices.

For ACR and Quart phantoms, the equivalent sections are analyzed where applicable even though each module does
not have an explicit name. Where intuitive similarities between the phantoms exist, the library usage is the same.

Features:

* Automatic phantom registration - Your phantom can be tilted, rotated, or translated—pylinac will automatically
register the phantom.

* Automatic testing of all major modules - Major modules are automatically registered and analyzed.

¢ Any scan protocol - Scan your CatPhan with any protocol; even scan it in a regular CT scanner. Any field size
or field extent is allowed.

5.7.2 Running the Demo

To run one of the CatPhan demos, create a script or start an interpreter and input:

from pylinac import CatPhan504
cbct = CatPhan504.run_demo () # the demo is a Varian high quality head scan

Results will be also be printed to the console:

— CatPhan 504 QA Test -

HU Linearity ROIs: Air: -998.0, PMP: -200.0, LDPE: -102.0, Poly: -45.0, Acrylic: 115.
-0, Delrin: 340.0, Teflon: 997.0

HU Passed?: True

Low contrast visibility: 3.46

Geometric Line Average (mm): 49.95

Geometry Passed?: True

Measured Slice Thickness (mm): 2.499

(continues on next page)

74 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

HU Uniformity

yatial Resolution

HU linearity RMTF
40 {F==r——~—
HU Linearity
_ [N
g S
S 0‘&‘_-[s
D +
* 20 %
B
—40 ge=—g=—my
—1000 0 1000 0.2%.5M™.75
Nominal Values Line pairs / mm

Uniformity Profiles

Low Contrast 0 ‘w
; —250 -
-
T 500
—750 —— Horizontal
— Vertical
—1000

0 100 200 300 400 500

5.7. CatPhan

75

pylinac Documentation, Release 3.8.2

(continued from previous page)

Slice Thickness Passed? True

Uniformity ROIs: Top: 6.0, Right: -1.0, Bottom: 5.0, Left: 10.0, Center: 14.0
Uniformity index: -1.479

Integral non-uniformity: 0.0075

Uniformity Passed?: True

MTF 50% (lp/mm): 0.56

Low contrast ROIs "seen": 3

As well, you can plot and save individual pieces of the analysis such as linearity:

HU linearity

A0 e e e

30 A

20 A

10 A

HU Delta
o
+
+

_10 _
_20 _
_30 _
SN/ J L O U A SO DUUUIUIVI I
—-1000 -750 -500 -—-250 0 250 500 750 1000
Nominal Values
Or the rMTF:

’cbct.plot_analyzed_subimage('rmtf')

Or generate a PDF report:

’cbct.publish_pdf('mycbct.pdf')

5.7.3 Typical Use

CatPhan analysis as done by this module closely follows what is specified in the CatPhan manuals, replacing the need
for manual measurements. There are 4 CatPhan models that pylinac can analyze: CatPhan504, CatPhan503, &

76 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

RMTF
1.0 1
0.8 -
L
5
= 0.6 -
>
©
T
o
0.4 -
0.2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Line pairs / mm

5.7. CatPhan 77

pylinac Documentation, Release 3.8.2

CatPhan600, & CatPhan604, each with their own class in pylinac. Let’s assume you have the CatPhan504 for
this example. Using the other models/classes is exactly the same except the class name.

from pylinac import CatPhan504 # or import the CatPhan503 or CatPhan600

The minimum needed to get going is to:

Load images — Loading the DICOM images into your CatPhan object is done by passing the images in during
construction. The most direct way is to pass in the directory where the images are:

cbct_folder = r"C:/QA Folder/CBCT/June monthly"
mycbct = CatPhanb504 (cbct_folder)

or load a zip file of the images:

zip_file = r"C:/QA Folder/CBCT/June monthly.zip"
mycbct = CatPhanb04.from_zip(zip_£file)

You can also use the demo images provided:

’mycbct = CatPhanb504.from_demo_images ()

Analyze the images — Once the folder/images are loaded, tell pylinac to start analyzing the images. See the
Algorithm section for details and analyze™ () for analysis options:

’mycbct.analyze()

View the results — The CatPhan module can print out the summary of results to the console as well as draw a
matplotlib image to show where the samples were taken and their values:

print results to the console

print (mycbct.results())

view analyzed images

mycbct .plot_analyzed_image ()

save the image

mycbct.save_analyzed_image ('mycatphan504.png')

generate PDF

mycbct .publish_pdf ('mycatphan.pdf', open_file=True) # open the PDF after saving,,
—as well.

5.7.4 Advanced Use

Usin

g results_data

Changed in version 3.0.

Using the catphan module in your own scripts? While the analysis results can be printed out, if you intend on using

them

elsewhere (e.g. in an API), they can be accessed the easiest by using the results_data () method which

returns a CatphanResult instance.

Note: While the pylinac tooling may change under the hood, this object should remain largely the same and/or
expand. Thus, using this is more stable than accessing attrs directly.

Continuing from above:

78

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

data = mycbct.results_data()
data.catphan_model
data.ctp404.measured_slice_thickness_mm
and more

return as a dict
data_dict = mycbct.results_data(as_dict=True)
data_dict['ctp404']['measured_slice_thickness_mm']

Partial scans

While the default behavior of pylinac is to analyze all modules in the scan (in fact it will error out if they aren’t), the
behavior can be customized. Pylinac always has to be aware of the CTP404 module as that’s the reference slice for
everything else. Thus, if the 404 is not in the scan you’re SOL. However, if one of the other modules is not present
you can remove or adjust its offset by subclassing and overloading the modules attr:

from pylinac import CatPhan504 # works for any of the other phantoms too
from pylinac.ct import CTP515, CTP486

class PartialCatPhan504 (CatPhan504) :

modules = {
CTP486: {'offset': -65},
CTP515: {'offset': -30},

the CTP528 was omitted

ct = PartialCatPhan504.from_zip(...) # use like normal

Examining rMTF

The rMTF can be calculated ad hoc like so. Note that CTP528 must be present (see above):

ct = ... # load a dataset like normal
ct.analyze()
ct.ctpb528.mtf.relative_resolution (x=40) # get the rMTF (lp/mm) at 40% resolution

Customizing module locations

Similar to partial scans, to modify the module location(s), overload the modules attr and edit the of fset value.
The value is in mm:

from pylinac import CatPhan504 # works for any of the other phantoms too
from pylinac.ct import CTP515, CTP486, CTP528

create custom catphan with module locations
class OffsetCatPhan504 (CatPhan504) :

modules = {
CTP486: {'offset': -60}, # normally -65
CTP528: {'offset': 30},
CTP515: {'offset': -25}, # normally -30

(continues on next page)

5.7. CatPhan 79

pylinac Documentation, Release 3.8.2

(continued from previous page)

ct = OffsetCatPhan504.from_zip(...) # use like normal

Customizing Modules

You can also customize modules themselves in v2.4+. Customization should always be done by subclassing an existing
module and overloading the attributes. Then, pass in the new custom module into the parent CatPhan class. The easiest
way to get started is copy the relevant attributes from the existing code.

As an example, let’s override the nominal HU values for CTP404.

from pylinac.ct import CatPhan504, CTP404CP504

first, customize the module
class CustomCTP404 (CTP404CP504) :

roi_dist_mm = 58.7 # this is the default value; we repeat here because it's easy,
—to copy from source

roi_radius_mm = 5 # ditto

roi_settings = {
'Air': {'value': -1000, 'angle': -93, 'distance': roi_dist_mm, 'radius': roi_
—radius_mm}, # changed 'angle' from -90
'"PMP': {'value': -196, 'angle': -120, 'distance': roi_dist_mm, 'radius': roi_

—radius_mm},
add other ROIs as appropriate

then, pass to the CatPhan model
class CustomCP504 (CatPhan504) :
modules = {
CustomCTP404: {'offset': 0}
add other modules here as appropriate

use like normal
ct = CustomCP504(...)

Warning: If you overload the roi_settings or modules attributes, you are responsible for filling it out
completely. I.e. when you overload it’s not partial. In the above example if you want other CTP modules you must
populate them.

5.7.5 Algorithm

The CatPhan module is based on the tests and values given in the respective CatPhan manual. The algorithm works
like such:

Allowances

* The images can be any size.
* The phantom can have significant translation in all 3 directions.

* The phantom can have significant roll and moderate yaw and pitch.

80 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

¢ All of the modules defined in the modules attribute must be within the scan extent.

Pre-Analysis

* Determine image properties — Upon load, the image set is analyzed for its DICOM properties to determine
mm/pixel spacing, rescale intercept and slope, manufacturer, etc.

* Convert to HU — The entire image set is converted from its raw values to HU by applying the rescale intercept
and slope which is contained in the DICOM properties.

* Find the phantom z-location — Upon loading, all the images are scanned to determine where the HU linearity
module (CTP404) is located. This is accomplished by examining each image slice and looking for 2 things:

— Ifthe CatPhan is in the image. At the edges of the scan this may not be true.

— If a circular profile has characteristics like the CTP404 module. If the CatPhan is in the image, a circular
profile is taken at the location where the HU linearity regions of interest are located. If the profile contains
low, high, and lots of medium values then it is very likely the HU linearity module. All such slices are
found and the median slice is set as the HU linearity module location. All other modules are located
relative to this position.

Analysis

* Determine phantom roll — Precise knowledge of the ROIs to analyze is important, and small changes in rotation
could invalidate automatic results. The roll of the phantom is determined by examining the HU module and
converting to a binary image. The air holes are then located and the angle of the two holes determines the
phantom roll.

Note: For each step below, the “module” analyzed is actually the mean, median, or maximum of 3 slices
(+/-1 slice around and including the nominal slice) to ensure robust measurements. Also, for each step/phantom
module, the phantom center is determined, which corrects for the phantom pitch and yaw.

Additionally, values tend to be lazy (computed only when asked for), thus the calculations listed may sometimes
be performed only when asked for.

¢ Determine HU linearity — The HU module (CTP404) contains several materials with different HU values.
Using hardcoded angles (corrected for roll) and radius from the center of the phantom, circular ROIs are sampled
which correspond to the HU material regions. The median pixel value of the ROI is the stated HU value.
Nominal HU values are taken as the mean of the range given in the manual(s):

5.7. CatPhan 81

pylinac Documentation, Release 3.8.2

Nominal material formulation and specific gravity

Material Formula Zestl Specific Gravity? HU range?
Air 78N, .210, .01Ar 8.00 0.00 -1046 : -986
PMP [CeH12(CH2)] 5.44 0.83 -220:-172
LDPE [CoH4] 5.44 0.92 121 :-87
Polystyrene [CgHgl 5.70 1.03 -65:-29
Acrylic [C5Hg02] 6.47 1.18 92 : 137
Bone 20% .51C, .06Ca, .06H, 9.09 1.14 211: 263
06N, .300, .03P
Delrin® Propristary 6.95 1.42 344 : 387
Bone 50% .35C, .14Ca, .04H, 11.46 1.40 667 : 783
06N, .340, .06P
Teflon® [CF2] 8.43 2.16 941 : 1060

* Determine HU uniformity — HU uniformity (CTP486) is calculated in a similar manner to HU linearity, but
within the CTP486 module/slice.

¢ Calculate Geometry/Scaling — The HU module (CTP404), besides HU materials, also contains several “nodes”
which have an accurate spacing (50 mm apart). Again, using hardcoded but corrected angles, the area around
the 4 nodes are sampled and then a threshold is applied which identifies the node within the ROI sample. The
center of mass of the node is determined and then the space between nodes is calculated.

* Calculate Spatial Resolution/MTF — The Spatial Resolution module (CTP528) contains 21 pairs of aluminum
bars having varying thickness, which also corresponds to the thickness between the bars. One unique advantage
of these bars is that they are all focused on and equally distant to the phantom center. This is taken advantage
of by extracting a CollapsedCircleProfile about the line pairs. The peaks and valleys of the profile are
located; peaks and valleys of each line pair are used to calculated the MTF. The relative MTF (i.e. normalized
to the first line pair) is then calculated from these values.

* Calculate Low Contrast Resolution — Low contrast is inherently difficult to determine since detectability of
humans is not simply contrast based. Pylinac’s analysis uses both the contrast value of the ROI as well as the
ROI size to compute a “detectability” score. ROIs above the score are said to be “seen”, while those below are
not seen. Only the 1.0% supra-slice ROIs are examined. Two background ROIs are sampled on either side of
the ROI contrast set. See Visibility for equation details.

* Calculate Slice Thickness — Slice thickness is measured by determining the FWHM of the wire ramps in the
CTP404 module. A profile of the area around each wire ramp is taken, and the FWHM is determined from the
profile. The profiles are averaged and the value is converted from pixels to mm and multiplied by 0.42 (Catphan
manual “Scan Slice Geometry” section).

Post-Analysis

* Test if values are within tolerance — For each module, the determined values are compared with the nominal
values. If the difference between the two is below the specified tolerance then the module passes.

5.7.6 Troubleshooting

First, check the general Troubleshooting section. Most problems in this module revolve around getting the data loaded.

« If you’re having trouble getting your dataset in, make sure you’re loading the whole dataset. Also make sure
you’ve scanned the whole phantom.

* Make sure there are no external markers on the CatPhan (e.g. BBs), otherwise the localization algorithm will
not be able to properly locate the phantom within the image.

82 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* Ensure that the FOV is large enough to encompass the entire phantom. If the scan is cutting off the phantom in
any way it will not identify it.

* The phantom should never touch the edge of an image, see above point.

¢ Make sure you’re loading the right CatPhan class. I.e. using a CatPhan600 class on a CatPhan504 scan may
result in errors or erroneous results.

5.7.7 APl Documentation

Main classes

These are the classes a typical user may interface with.

class pylinac.ct.CatPhan504 (folderpath: Union[str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence[_io.BytesIO]], check_uid: bool
= True)

Bases: pylinac.ct.CatPhanBase

A class for loading and analyzing CT DICOM files of a CatPhan 504. Can be from a CBCT or CT scanner
Analyzes: Uniformity (CTP486), High-Contrast Spatial Resolution (CTP528), Image Scaling & HU Linearity
(CTP404), and Low contrast (CTP515).

Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.
* FileNotFoundError —If no CT images are found in the folder

static run_demo (show: bool = True)
Run the CBCT demo using high-quality head protocol images.

analyze (hu_tolerance: Union[int, float] = 40, scaling_tolerance: Union[int, float] = 1, thick-
ness_tolerance: Union[int, float] = 0.2, low_contrast_tolerance: Union[int, float] =
1, cnr_threshold: Union[int, float] = 15, zip_after: bool = False, contrast_method:
Union[pylinac.core.roi.Contrast, str] = <Contrast MICHELSON: ’Michelson’>, visibil-

ity_threshold: float = 0.15)
Single-method full analysis of CBCT DICOM files.

Parameters
* hu_tolerance (int)— The HU tolerance value for both HU uniformity and linearity.

* scaling tolerance(float, int)-The scaling tolerancein mm of the geometric
nodes on the HU linearity slice (CTP404 module).

¢ thickness_tolerance (float, int)- The tolerance of the thickness calculation
in mm, based on the wire ramps in the CTP404 module.

Warning: Thickness accuracy degrades with image noise; i.e. low mAs images are
less accurate.

5.7. CatPhan 83

pylinac Documentation, Release 3.8.2

e low_contrast_tolerance (int)— The number of low-contrast bubbles needed to
be “seen” to pass.

* cnr_threshold (float, int) — Deprecated since version 3.0: Use visibility pa-
rameter instead.

The threshold for “detecting” low-contrast image. See RTD for calculation info.

* zip_after (bool) - If the CT images were not compressed before analysis and this is
set to true, pylinac will compress the analyzed images into a ZIP archive.

* contrast_method - The contrast equation to use. See Low contrast.

* visibility_ threshold — The threshold for detecting low-contrast ROIs. Use in-
stead of cnr_threshold. Follows the Rose equation. See Visibility.

catphan_size

The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin_slice () — int

Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.

Return type int

find_phantom_axis () -> (typing.Callable, typing.Callable)

We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly
function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

find_phantom_roll (func: Optional[Callable] = None) — float

Determine the “roll” of the phantom.

This algorithm uses the two air bubbles in the HU slice and the resulting angle between them.
Parameters func — A callable to sort the air ROIs.
Returns float

Return type the angle of the phantom in degrees.

classmethod from demo_images ()

Construct a CBCT object from the demo images.

classmethod from_ url (url: str, check_uid: bool = True)

Instantiate a CBCT object from a URL pointing to a .zip object.
Parameters
* url (str)— URL pointing to a zip archive of CBCT images.

¢ check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

84

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

classmethod from_zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)
Construct a CBCT object and pass the zip file.

Parameters
* zip file(str, ZipFile)- Path to the zip file or a ZipFile object.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* FileExistsError : If zip_file passed was not a legitimate zip file.
¢ FileNotFoundError : If no CT images are found in the folder

localize () — None
Find the slice number of the catphan’s HU linearity module and roll angle

mm_per_pixel
The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

plot_analyzed_ image (show: bool = True, **plt_kwargs) — None
Plot the images used in the calculation and summary data.

Parameters
* show (bool)— Whether to plot the image or not.

* plt_kwargs (dict) — Keyword args passed to the plt.figure() method. Allows one to
set things like figure size.

plot_analyzed_subimage (subimage: str = 'hu’, delta: bool = True, show: bool = True) — Op-
tional[matplotlib.figure.Figure]
Plot a specific component of the CBCT analysis.

Parameters

e subimage ({ 'hu', 'un', 'sp', 'lc', 'mtf', 'lin', 'prof'})-The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

— hu draws the HU linearity image.

— un draws the HU uniformity image.

— sp draws the Spatial Resolution image.

— 1lc draws the Low Contrast image (if applicable).

— mt £ draws the RMTF plot.

— 1lin draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
e delta (bool)— Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

publish_pdf (filename: Union[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

. . — None - . o
Publish (print) a PDF containing the analysis and quantitative results.

5.7.

CatPhan 85

pylinac Documentation, Release 3.8.2

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘TrueBeam’} would
result in text in the PDF like: —————— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis as a string. Use with print().

Parameters as_list (bool) — Whether to return as a list of list of strings vs single string.
Pretty much for internal usage.

results_data (as_dict: bool = False) — Union[pylinac.ct.CatphanResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

save_analyzed_image (filename: Union[str, pathlib.Path], **kwargs) — None
Save the analyzed summary plot.

Parameters
e filename (str, file object)- The name of the file to save the image to.
* kwargs — Any valid matplotlib kwargs.

save_analyzed_subimage (filename: Union[str, BinarylO], subimage: str = ’hu’, **kwargs) —
Optional[matplotlib.figure.Figure]
Save a component image to file.

Parameters
e filename (str, file object) - The file to write the image to.

* subimage (str)-See plot_analyzed_subimage () for parameter info.

class pylinac.ct.CatPhan503 (folderpath: Union[str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence[_io.ByteslO]], check_uid: bool
= True)

Bases: pylinac.ct.CatPhanBase

A class for loading and analyzing CT DICOM files of a CatPhan 503. Analyzes: Uniformity (CTP486), High-
Contrast Spatial Resolution (CTP528), Image Scaling & HU Linearity (CTP404).

Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

* check_uid (bool) — Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.

* FileNotFoundError —If no CT images are found in the folder

86 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

static run_demo (show: bool = True)
Run the CBCT demo using high-quality head protocol images.

analyze (hu_tolerance: Union[int, float] = 40, scaling_tolerance: Union[int, float] = 1, thick-
ness_tolerance: Unionf[int, float] = 0.2, low_contrast_tolerance: Union[int, float] =
1, cnr_threshold: Union[int, float] = 15, zip_after: bool = False, contrast_method:
Union[pylinac.core.roi.Contrast, str] = <Contrast MICHELSON: ’Michelson’>, visibil-

ity_threshold: float = 0.15)
Single-method full analysis of CBCT DICOM files.

Parameters
* hu_tolerance (int)— The HU tolerance value for both HU uniformity and linearity.

* scaling_tolerance (float, int)-The scalingtolerancein mm of the geometric
nodes on the HU linearity slice (CTP404 module).

e thickness_tolerance (float, int)— The tolerance of the thickness calculation
in mm, based on the wire ramps in the CTP404 module.

Warning: Thickness accuracy degrades with image noise; i.e. low mAs images are
less accurate.

¢ low_contrast_tolerance (int)— The number of low-contrast bubbles needed to
be “seen” to pass.

* cnr_threshold (float, int) — Deprecated since version 3.0: Use visibility pa-
rameter instead.

The threshold for “detecting” low-contrast image. See RTD for calculation info.

* zip_after (bool) - If the CT images were not compressed before analysis and this is
set to true, pylinac will compress the analyzed images into a ZIP archive.

* contrast_method - The contrast equation to use. See Low contrast.

* visibility_ threshold — The threshold for detecting low-contrast ROIs. Use in-
stead of cnr_threshold. Follows the Rose equation. See Visibility.

catphan_size
The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin_slice () — int
Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.
Return type int

find_phantom_axis () -> (typing.Callable, typing.Callable)
We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly

5.7. CatPhan 87

pylinac Documentation, Release 3.8.2

function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

find_phantom_roll (func: Optional{Callable] = None) — float
Determine the “roll” of the phantom.

This algorithm uses the two air bubbles in the HU slice and the resulting angle between them.
Parameters func — A callable to sort the air ROIs.
Returns float
Return type the angle of the phantom in degrees.

classmethod from demo_images ()
Construct a CBCT object from the demo images.

classmethod from url (url: str, check_uid: bool = True)
Instantiate a CBCT object from a URL pointing to a .zip object.

Parameters
* url (str)— URL pointing to a zip archive of CBCT images.

¢ check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

classmethod from_zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)
Construct a CBCT object and pass the zip file.

Parameters
e zip file (str, ZipFile)-Path to the zip file or a ZipFile object.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* FileExistsError : If zip_file passed was not a legitimate zip file.
¢ FileNotFoundError : If no CT images are found in the folder

localize () — None
Find the slice number of the catphan’s HU linearity module and roll angle

mm_per_pixel
The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

plot_analyzed_image (show: bool = True, **plt_kwargs) — None
Plot the images used in the calculation and summary data.

Parameters
* show (bool)— Whether to plot the image or not.

* plt_kwargs (dict) — Keyword args passed to the plt.figure() method. Allows one to
set things like figure size.

plot_analyzed_subimage (subimage: str = 'hu’, delta: bool = True, show: bool = True) — Op-
tional[matplotlib.figure.Figure]
Plot a specific component of the CBCT analysis.

88 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Parameters

e subimage ({ 'hu', 'un', 'sp', 'lc', 'mtf', 'lin', 'prof'})-The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

— hu draws the HU linearity image.

— un draws the HU uniformity image.

— sp draws the Spatial Resolution image.

— lc draws the Low Contrast image (if applicable).

— mt f draws the RMTF plot.

— 1lin draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
* delta (bool) - Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

publish_pdf (filename: Union/[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

. . — None . . o
Publish (print) a PDF containing the analysis and quantitative results.
Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) - Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘TrueBeam’} would
result in text in the PDF like: ——— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis as a string. Use with print().

Parameters as_1list (bool) — Whether to return as a list of list of strings vs single string.
Pretty much for internal usage.

results_data (as_dict: bool = False) — Union[pylinac.ct.CatphanResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

save_analyzed_image (filename: Union[str, pathlib.Path], **kwargs) — None
Save the analyzed summary plot.

Parameters
e filename (str, file object)—The name of the file to save the image to.
* kwargs — Any valid matplotlib kwargs.

save_analyzed subimage (filename: Union[str, BinarylO], subimage: str = "hu’, **kwargs) —

Optional[matplotlib.figure.Figure]
Save a component image to file.

. CatPhan 89

pylinac Documentation, Release 3.8.2

Parameters
e filename (str, file object)— The file to write the image to.

* subimage (str)—See plot_analyzed_subimage () for parameter info.

class pylinac.ct.CatPhan600 (folderpath: Union[str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence[_io.BytesIO]], check_uid: bool
= True)

Bases: pylinac.ct.CatPhanBase

A class for loading and analyzing CT DICOM files of a CatPhan 600. Analyzes: Uniformity (CTP486), High-
Contrast Spatial Resolution (CTP528), Image Scaling & HU Linearity (CTP404), and Low contrast (CTP515).

Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.
* FileNotFoundError —If no CT images are found in the folder

static run_demo (show: bool = True)
Run the CatPhan 600 demo.

find_phantom_roll (func: Optional[Callable] = None) — float
With the CatPhan 600, we have to consider that the top air ROI has a water vial in it (see pg 12 of the
manual). If so, the top air ROI won’t be detected. Rather, the default algorithm will find the bottom air
ROI and teflon to the left. It may also find the top air ROI if the water vial isn’t there. We use the below
lambda to select the bottom air and teflon ROIs consistently. These two ROIs are at 75 degrees from
cardinal. We thus offset the default outcome by 75.

analyze (hu_tolerance: Union[int, float] = 40, scaling_tolerance: Union[int, float] = 1, thick-
ness_tolerance: Union[int, float] = 0.2, low_contrast_tolerance: Union[int, float] =
1, cnr_threshold: Union[int, float] = 15, zip_after: bool = False, contrast_method:
Union[pylinac.core.roi.Contrast, str] = <Contrast MICHELSON: ’Michelson’>, visibil-

ity_threshold: float = 0.15)
Single-method full analysis of CBCT DICOM files.

Parameters
* hu tolerance (int) - The HU tolerance value for both HU uniformity and linearity.

* scaling_tolerance (float, int)-The scalingtolerancein mm of the geometric
nodes on the HU linearity slice (CTP404 module).

e thickness_tolerance (float, int)- The tolerance of the thickness calculation
in mm, based on the wire ramps in the CTP404 module.

Warning: Thickness accuracy degrades with image noise; i.e. low mAs images are
less accurate.

* low_contrast_tolerance (int)— The number of low-contrast bubbles needed to
be “seen” to pass.

90 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* cnr_threshold (float, int) — Deprecated since version 3.0: Use visibility pa-
rameter instead.

The threshold for “detecting” low-contrast image. See RTD for calculation info.

e zip_after (bool) - If the CT images were not compressed before analysis and this is
set to true, pylinac will compress the analyzed images into a ZIP archive.

* contrast_method — The contrast equation to use. See Low contrast.

* visibility threshold — The threshold for detecting low-contrast ROIs. Use in-
stead of cnr_threshold. Follows the Rose equation. See Visibility.

catphan_size

The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin slice() —int

Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.

Return type int

find_phantom_axis () -> (typing.Callable, typing.Callable)

We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly
function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

classmethod from demo_images ()

Construct a CBCT object from the demo images.

classmethod from_ url (url: str, check_uid: bool = True)

Instantiate a CBCT object from a URL pointing to a .zip object.
Parameters
* url (str)— URL pointing to a zip archive of CBCT images.

¢ check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

classmethod from_zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)

Construct a CBCT object and pass the zip file.
Parameters
e zip_ file (str, ZipFile)-Path to the zip file or a ZipFile object.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises

* FileExistsError : If zip_file passed was not a legitimate zip file.

5.7.

CatPhan 91

pylinac Documentation, Release 3.8.2

* FileNotFoundError : If no CT images are found in the folder

localize () — None
Find the slice number of the catphan’s HU linearity module and roll angle

mm_per_pixel
The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

plot_analyzed_image (show: bool = True, **plt_kwargs) — None
Plot the images used in the calculation and summary data.

Parameters
* show (bool)— Whether to plot the image or not.

* plt_kwargs (dict) — Keyword args passed to the plt.figure() method. Allows one to
set things like figure size.

plot_analyzed_subimage (subimage: str = 'hu’, delta: bool = True, show: bool = True) — Op-
tional[matplotlib.figure.Figure]
Plot a specific component of the CBCT analysis.

Parameters

e subimage ({ 'hu', 'un', 'sp', 'lc', 'mtf', 'lin', 'prof'})-The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

— hu draws the HU linearity image.

— un draws the HU uniformity image.

— sp draws the Spatial Resolution image.

— 1lc draws the Low Contrast image (if applicable).

— mt f draws the RMTF plot.

— 1lin draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
e delta (bool)— Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

publish_pdf (filename: Union[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

. . — None - . o
Publish (print) a PDF containing the analysis and quantitative results.
Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: ————— Author: James Unit: TrueBeam

92 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis as a string. Use with print().

Parameters as_list (bool) — Whether to return as a list of list of strings vs single string.
Pretty much for internal usage.

results_data (as_dict: bool = False) — Union[pylinac.ct.CatphanResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

save_analyzed_image (filename: Union[str, pathlib.Path], **kwargs) — None
Save the analyzed summary plot.

Parameters
e filename (str, file object)- The name of the file to save the image to.
* kwargs — Any valid matplotlib kwargs.

save_analyzed_subimage (filename: Union[str, BinarylO], subimage: str = 'hu’, **kwargs) —
Optional[matplotlib.figure.Figure]
Save a component image to file.

Parameters
e filename (str, file object)— The file to write the image to.

* subimage (str)-See plot_analyzed_subimage () for parameter info.

class pylinac.ct.CatPhan604 (folderpath: Union[str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence[_io.ByteslO]], check_uid: bool
= True)

Bases: pylinac.ct.CatPhanBase

A class for loading and analyzing CT DICOM files of a CatPhan 604. Can be from a CBCT or CT scanner
Analyzes: Uniformity (CTP486), High-Contrast Spatial Resolution (CTP528), Image Scaling & HU Linearity
(CTP404), and Low contrast (CTP515).

Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

* check_uid (bool) — Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.
* FileNotFoundError —If no CT images are found in the folder

static run_demo (show: bool = True)
Run the CBCT demo using high-quality head protocol images.

analyze (hu_tolerance: Union[int, float] = 40, scaling_tolerance: Union[int, float] = 1, thick-
ness_tolerance: Union[int, float] = 0.2, low_contrast_tolerance: Union[int, float] =
1, cnr_threshold: Unionfint, float] = 15, zip_after: bool = False, contrast_method:
Union[pylinac.core.roi.Contrast, str] = <Contrast MICHELSON: ’Michelson’>, visibil-

ity_threshold: float = 0.15)
Single-method full analysis of CBCT DICOM files.

Parameters

5.7. CatPhan 93

pylinac Documentation, Release 3.8.2

* hu_tolerance (int)— The HU tolerance value for both HU uniformity and linearity.

* scaling_tolerance (float, int)-The scalingtolerancein mm of the geometric
nodes on the HU linearity slice (CTP404 module).

e thickness_tolerance (float, int)- The tolerance of the thickness calculation
in mm, based on the wire ramps in the CTP404 module.

Warning: Thickness accuracy degrades with image noise; i.e. low mAs images are
less accurate.

e low_contrast_tolerance (int)— The number of low-contrast bubbles needed to
be “seen” to pass.

* cnr_threshold (float, int) — Deprecated since version 3.0: Use visibility pa-
rameter instead.

The threshold for “detecting” low-contrast image. See RTD for calculation info.

* zip_after (bool) - If the CT images were not compressed before analysis and this is
set to true, pylinac will compress the analyzed images into a ZIP archive.

* contrast_method - The contrast equation to use. See Low contrast.

* visibility_ threshold — The threshold for detecting low-contrast ROIs. Use in-
stead of cnr_threshold. Follows the Rose equation. See Visibility.

catphan_size

The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin_slice () — int

Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.

Return type int

find_phantom_axis () -> (typing.Callable, typing.Callable)

We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly
function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

find_phantom_roll (func: Optional{Callable] = None) — float

Determine the “roll” of the phantom.
This algorithm uses the two air bubbles in the HU slice and the resulting angle between them.
Parameters func — A callable to sort the air ROIs.

Returns float

94

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Return type the angle of the phantom in degrees.

classmethod from demo_images ()
Construct a CBCT object from the demo images.

classmethod from_ url (url: str, check_uid: bool = True)
Instantiate a CBCT object from a URL pointing to a .zip object.

Parameters
* url (str)— URL pointing to a zip archive of CBCT images.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

classmethod from_zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)
Construct a CBCT object and pass the zip file.

Parameters
e zip_ file (str, ZipFile)-Path to the zip file or a ZipFile object.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* FileExistsError : If zip_file passed was not a legitimate zip file.
¢ FileNotFoundError : If no CT images are found in the folder

localize () — None
Find the slice number of the catphan’s HU linearity module and roll angle

mm_per_pixel
The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

plot_analyzed_image (show: bool = True, **plt_kwargs) — None
Plot the images used in the calculation and summary data.

Parameters
* show (bool)— Whether to plot the image or not.

* plt_kwargs (dict) — Keyword args passed to the plt.figure() method. Allows one to
set things like figure size.

plot_analyzed_subimage (subimage: str = 'hu’, delta: bool = True, show: bool = True) — Op-
tional[matplotlib.figure.Figure]
Plot a specific component of the CBCT analysis.

Parameters

e subimage ({ 'hu', 'un', 'sp', 'lc', 'mtf', 'lin', 'prof'})-The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

hu draws the HU linearity image.

un draws the HU uniformity image.

sp draws the Spatial Resolution image.

1c draws the Low Contrast image (if applicable).

5.7.

CatPhan

95

pylinac Documentation, Release 3.8.2

— mt £ draws the RMTF plot.

— 1lin draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
* delta (bool) - Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

publish_pdf (filename: Union/[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

. . — None - . o
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) - Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘TrueBeam’} would
result in text in the PDF like: ———— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis as a string. Use with print().

Parameters as_1list (bool) — Whether to return as a list of list of strings vs single string.
Pretty much for internal usage.

results_data (as_dict: bool = False) — Union[pylinac.ct.CatphanResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

save_analyzed_image (filename: Union[str, pathlib.Path], **kwargs) — None
Save the analyzed summary plot.

Parameters
e filename (str, file object)—The name of the file to save the image to.
* kwargs — Any valid matplotlib kwargs.

save_analyzed subimage (filename: Union[str, BinarylO], subimage: str = "hu’, **kwargs) —
Optional[matplotlib.figure.Figure]
Save a component image to file.

Parameters
e filename (str, file object)— The file to write the image to.
* subimage (str)—See plot_analyzed_subimage () for parameter info.

class pylinac.ct.CatphanResult (catphan_model: str, catphan_roll_deg: float, origin_slice:
int, num_images: int, ctp404: pylinac.ct. CTP404Result,
ctp486: Optional[pylinac.ct. CTP486Result] = None, ctp528:
Optional[pylinac.ct. CTP528Result] = None, ctp515: Op-

tional[pylinac.ct. CTP515Result] = None)
Bases: pylinac.core.utilities.ResultBase

96 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
catphan_model = None
catphan_roll_deg = None

origin_slice = None

num_images = None

ctp404 = None

ctp486 = None

ctp528 None
ctp515 = None

class pylinac.ct.CTP404Result (offset: int, low_contrast_visibility: float, thickness_passed:
bool, measured_slice_thickness_mm: float, thick-
ness_num_slices_combined: int, geometry_passed: bool,
avg_line_distance_mm: float, line_distances_mm: List[float],

hu_linearity_passed: bool, hu_tolerance: float, hu_rois: dict)
Bases: object

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
offset = None
low_contrast_visibility = None
thickness_passed = None

measured _slice_thickness_mm = None
thickness _num slices_combined = None
geometry passed = None
avg_line_distance_mm = None
line_distances_mm = None
hu_linearity passed = None
hu_tolerance = None

hu_rois = None

class pylinac.ct.CTP528Result (start_angle_radians: float, mtf_Ilp_mm: dict, roi_settings: dict)
Bases: object

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
start_angle_radians = None
mtf lp mm = None

roi_settings = None

5.7. CatPhan 97

pylinac Documentation, Release 3.8.2

class pylinac.ct.CTP515Result (cnr_threshold: float, num_rois_seen: int, roi_settings: dict)

Bases: object

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

cnr_threshold = None

num_rois_seen = None

roi_settings = None

class pylinac.ct.CTP486Result (uniformity_index: float, integral_non_uniformity: float, passed:

bool, rois: dict)
Bases: object

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
uniformity_index = None

integral _non_uniformity = None
passed = None

rois = None

class pylinac.ct.ROIResult (name: str, value: float, stdev: float, difference: float, nominal_value:

float, passed: bool)
Bases: object

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
name = None

value = None

stdev = None

difference = None

nominal value = None

passed = None

Module classes (CTP404, etc)

class pylinac.ct.Slice (catphan, slice_num: Optional[int] = None, combine: bool = True, com-

bine_method: str = 'mean’, num_slices: int = 0, clear_borders: bool =

True)
Bases: object

Base class for analyzing specific slices of a CBCT dicom set.
Parameters

* catphan (~pylinac.cbct.CatPhanBase instance.) —

98

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* slice_num (int)— The slice number of the DICOM array desired. If None, will use the
s1lice_num property of subclass.

e combine (bool) — If True, combines the slices +/- num_slices around the slice of
interest to improve signal/noise.

e combine_method ({ 'mean’', 'max'})- How to combine the slices if combine is
True.

* num_slices (int) - The number of slices on either side of the nominal slice to combine
to improve signal/noise; only applicable if combine is True.

phantom_roi
Get the Scikit-Image ROI of the phantom

The image is analyzed to see if: 1) the CatPhan is even in the image (if there were any ROIs detected) 2)
an ROl is within the size criteria of the catphan 3) the ROI area that is filled compared to the bounding box
area is close to that of a circle

is_phantom_in_view () — bool
Whether the phantom appears to be within the slice.

phan_center
Determine the location of the center of the phantom.

class pylinac.ct.CatPhanModule (catphan, tolerance: Optional[float] = None, offset: int = 0,

clear_borders: bool = True)
Bases: pylinac.ct.Slice

Base class for a CTP module.

roi_dist_mm
aliasof builtins.float

roi_radius_mm
aliasof builtins.float

preprocess (catphan)
A preprocessing step before analyzing the CTP module.

Parameters catphan (~pylinac.cbct.CatPhanBase instance.) —

slice_num
The slice number of the spatial resolution module.

Returns
Return type float

plot_rois (axis: matplotlib.axes._axes.Axes) — None
Plot the ROIs to the axis.

plot (axis: matplotlib.axes._axes.Axes)
Plot the image along with ROIs to an axis

class pylinac.ct.CTP404CP503 (catphan, offset: int, hu_tolerance: float, thickness_tolerance: float,

scaling_tolerance: float)
Bases: pylinac.ct.CTP404CP504

Alias for namespace consistency
Parameters
* catphan (~pylinac.cbct.CatPhanBase instance.) —

e offset (int) -

5.7. CatPhan 99

pylinac Documentation, Release 3.8.2

* hu_tolerance (float)—
e thickness_tolerance (float) -
* scaling_tolerance (float)-

class pylinac.ct.CTP404CP504 (catphan, offset: int, hu_tolerance: float, thickness_tolerance: float,

scaling_tolerance: float)
Bases: pylinac.ct.CatPhanModule

Class for analysis of the HU linearity, geometry, and slice thickness regions of the CTP404.
Parameters
* catphan (~pylinac.cbct.CatPhanBase instance.) —
e offset (int) -
* hu_tolerance (float)—
* thickness_tolerance (float) -
* scaling_tolerance (float)-

preprocess (catphan) — None
A preprocessing step before analyzing the CTP module.

Parameters catphan (~pylinac.cbct.CatPhanBase instance.) —

lev
The low-contrast visibility

plot_linearity (axis: Optional[matplotlib.axes._axes.Axes] = None, plot_delta: bool = True) —

tuple
Plot the HU linearity values to an axis.

Parameters

* axis (None, matplotlib.Axes) — The axis to plot the values on. If None, will
create a new figure.

* plot_delta (bool) — Whether to plot the actual measured HU values (False), or the
difference from nominal (True).

passed_hu
Boolean specifying whether all the ROIs passed within tolerance.

plot_rois (axis: matplotlib.axes._axes.Axes) — None
Plot the ROIs onto the image, as well as the background ROIs

passed_thickness
Whether the slice thickness was within tolerance from nominal.

meas_slice_thickness
The average slice thickness for the 4 wire measurements in mm.

passed_geometry
Returns whether all the line lengths were within tolerance.

class pylinac.ct.CTP404CP600 (catphan, offset: int, hu_tolerance: float, thickness_tolerance: float,

scaling_tolerance: float)
Bases: pylinac.ct.CTP404CP504

Parameters

* catphan (~pylinac.cbct.CatPhanBase instance.) —

100 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

e offset (int) -

e hu_tolerance (float)—

e thickness_tolerance (float) -
* scaling tolerance (float)-—

class pylinac.ct.CTP404CP604 (catphan, offset: int, hu_tolerance: float, thickness_tolerance: float,

scaling_tolerance: float)
Bases: pylinac.ct.CTP404CP504

Parameters
* catphan (~pylinac.cbct.CatPhanBase instance.) —
e offset (int) -
* hu_tolerance (float)—
* thickness_tolerance (float) -
* scaling_tolerance (float)-

class pylinac.ct.CTP528CP503 (catphan, tolerance: Optional[float] = None, offset: int = 0,

clear_borders: bool = True)
Bases: pylinac.ct.CTP528CP504

class pylinac.ct.CTP528CP504 (catphan, tolerance: Optional[float] = None, offset: int

clear_borders: bool = True)
Bases: pylinac.ct.CatPhanModule

Il
=)

Class for analysis of the Spatial Resolution slice of the CBCT dicom data set.

A collapsed circle profile is taken of the line-pair region. This profile is search for peaks and valleys. The MTF
is calculated from those peaks & valleys.

radius2linepairs_mm
The radius in mm to the line pairs.

Type float

mtf
The Relative MTF of the line pairs, normalized to the first region.

Returns
Return type dict

radius2linepairs
Radius from the phantom center to the line-pair region, corrected for pixel spacing.

plot_rois (axis: matplotlib.axes._axes.Axes) — None
Plot the circles where the profile was taken within.

circle_profile
Calculate the median profile of the Line Pair region.

Returns :class:‘pylinac.core.profile.Collapsed CircleProfile*
Return type A 1D profile of the Line Pair region.

class pylinac.ct.CTP528CP600 (catphan, tolerance: Optional[float] = None, offset: int = 0,

clear_borders: bool = True)
Bases: pylinac.ct.CTP528CP504

5.7. CatPhan 101

pylinac Documentation, Release 3.8.2

class pylinac.ct.CTP528CP604 (catphan, tolerance: Optional[float] = None, offset: int = 0,
clear_borders: bool = True)
Bases: pylinac.ct.CTP528CP504
Alias for namespace consistency.

class pylinac.ct.CTP515 (catphan, tolerance: float, cnr_threshold: float, offset: int, contrast_method:

pylinac.core.roi.Contrast, visibility_threshold: float)
Bases: pylinac.ct.CatPhanModule

Class for analysis of the low contrast slice of the CTP module. Low contrast is measured by obtaining the
average pixel value of the contrast ROIs and comparing that value to the average background value. To obtain a
more “human” detection level, the contrast (which is largely the same across different-sized ROIs) is multiplied
by the diameter. This value is compared to the contrast threshold to decide if it can be “seen”.

rois_visible
The number of ROIs “visible”.

window _min
Lower bound of CT window/leveling to show on the plotted image. Improves apparent contrast.

window_max
Upper bound of CT window/leveling to show on the plotted image. Improves apparent contrast

class pylinac.ct.CTP486 (catphan, tolerance: Optional[float] = None, offset: int = 0, clear_borders:

bool = True)
Bases: pylinac.ct.CatPhanModule

Class for analysis of the Uniformity slice of the CTP module. Measures 5 ROIs around the slice that should all
be close to the same value.

plot_profiles (axis: Optional[matplotlib.axes._axes.Axes] = None) — None
Plot the horizontal and vertical profiles of the Uniformity slice.

Parameters axis (None, matplotlib.Axes)— The axis to plot on; if None, will create
a new figure.

overall_ passed
Boolean specifying whether all the ROIs passed within tolerance.

uniformity_ index
/Iwww.tandfonline.com/doi/pdf/10.3109/0284186X.2011.590525

Type The Uniformity Index. Elstrom et al equation 2. https

integral non_uniformity
/Iwww.tandfonline.com/doi/pdf/10.3109/0284186X.2011.590525

Type The Integral Non-Uniformity. Elstrom et al equation 1. https

ROI Objects

class pylinac.ct.HUDiskROI (array: Union[numpy.ndarray, pylinac.core.image.Arraylmage], an-
gle: float, roi_radius: float, dist_from_center: float, phantom_center:
Union[tuple, pylinac.core.geometry.Point], nominal_value: Op-
tional[float] = Nomne, tolerance: Optional[float] = None, back-
ground_mean: Optional[float] = None, background_std: Op-

tional[float] = None)
Bases: pylinac.core.roi.DiskROT

An HU ROI object. Represents a circular area measuring either HU sample (Air, Poly, ...) or HU uniformity
(bottom, left, ...).

102 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Parameters
* nominal_value — The nominal pixel value of the HU ROI.
* tolerance - The roi pixel value tolerance.

value_ diff
The difference in HU between measured and nominal.

passed
Boolean specifying if ROI pixel value was within tolerance of the nominal value.

plot_color
Return one of two colors depending on if ROI passed.

class pylinac.ct.ThicknessROI (array, width, height, angle, dist_from_center, phantom_center)
Bases: pylinac.core.roi.RectangleROI

A rectangular ROI that measures the angled wire rod in the HU linearity slice which determines slice thickness.

long profile
The profile along the axis perpendicular to ramped wire.

wire_fwhm
The FWHM of the wire in pixels.

plot_color
The plot color.

class pylinac.ct.GeometricLine (geo_roil: pylinac.core.geometry.Point, geo_roi2:
pylinac.core.geometry.Point, mm_per_pixel: float, tolerance:
Union[int, float])
Bases: pylinac.core.geometry.Line

Represents a line connecting two nodes/ROIs on the Geometry Slice.

nominal_length_mm
The nominal distance between the geometric nodes, in mm.

Type int, float

Parameters
* geo_roil (GEO_ROI) - One of two ROIs representing one end of the line.
* geo_roi2 (GEO_ROI) — The other ROI which is the other end of the line.
* mm per_ pixel (float)- The mm/pixel value.
* tolerance (int, float)- The tolerance of the geometric line, in mm.
passed
Whether the line passed tolerance.

pass_fail_ color
Plot color for the line, based on pass/fail status.

length_mm
Return the length of the line in mm.

5.7. CatPhan 103

pylinac Documentation, Release 3.8.2

Helper Functions

pylinac.ct.combine_surrounding_slices (dicomstack: pylinac.core.image.DicomlmageStack,
nominal_slice_num: int, slices_plusminus: int = I,
mode: str = 'mean’) — numpy.ndarray
Return an array that is the combination of a given slice and a number of slices surrounding it.

Parameters
* dicomstack (~pylinac.core.image.DicomlmageStack) — The CBCT DICOM stack.
* nominal_slice_num (int)— The slice of interest (along 3rd dim).

* slices_plusminus (int) — How many slices plus and minus to combine (also along
3rd dim).

* mode ({ 'mean', 'median', 'max})— Specifiesthe method of combination.
Returns combined_array — The combined array of the DICOM stack slices.
Return type numpy.array

pylinac.ct.get_regions (slice_or_arr: Union[pylinac.ct.Slice, numpy.ndarray], fill_holes: bool =
False, clear_borders: bool = True, threshold: str = ’otsu’) — Tu-

ple[numpy.ndarray, list, int]
Get the skimage regions of a black & white image.

5.8 ACR Phantoms

5.8.1 Overview

New in version 3.2.

Warning: These algorithms have only a limited amount of testing data and results should be scrutinized. Further,
the algorithm is more likely to change in the future when a more robust test suite is built up. If you’d like to submit
data, enter it here.

The ACR module provides routines for automatically analyzing DICOM images of the ACR CT 464 phantom and
Large MR phantom. It can load a folder or zip file of images, correcting for translational and rotational offsets.

Phantom reference information is drawn from the ACR CT solution article and the analysis is drawn from the ACR
CT testing article. MR analysis is drawn from the ACR Guidance document.

Warning: Due to the rectangular ROIs on the MRI phantom analysis, rotational errors should be <= 1 degree.
Translational errors are still accounted for however for any reasonable amount.

5.8.2 Typical Use

The ACR CT and MR analyses follows a similar pattern of load/analyze/output as the rest of the library. Unlike the
CatPhan analysis, customization is not a goal, as the phantoms and analyses are much more well-defined. L.e. there’s
less of a use case for custom phantoms in this scenario. CT is mostly used here but is interchangeable with the MRI
class.

To use the ACR analysis, import the class:

104 Chapter 5. Contributing

https://forms.gle/RBR5ubFvjogE9iC67
https://accreditationsupport.acr.org/support/solutions/articles/11000053945-overview-of-the-ct-phantom
https://accreditationsupport.acr.org/support/solutions/articles/11000056197-acr-ct-phantom-scanning-instructions
https://accreditationsupport.acr.org/support/solutions/articles/11000056197-acr-ct-phantom-scanning-instructions
https://www.acraccreditation.org/-/media/ACRAccreditation/Documents/MRI/LargePhantomGuidance.pdf?la=en

pylinac Documentation, Release 3.8.2

from pylinac import ACRCT, ACRMRILarge

And then load, analyze, and view the results:

* Load images — Loading can be done with a directory or zip file:

acr_ct_folder = r"C:/CT/ACR/Sept 2021"
ct = ACRCT (acr_ct_folder)

acr_mri_folder = r"C:/MRI/ACR/Sept 2021"
mri = ACRMRILarge (acr_mri_folder)

or load from zip:

acr_ct_zip = r"C:/CT/ACR/Sept 2021.zip"
ct = ACRCT.from_zip(acr_ct_zip)

* Analyze — Analyze the dataset:

ct.analyze ()

* View the results — Reviewing the results can be done in text or dict format as well as images:

print text to the console
print (ct.results())

view analyzed image summary
ct.plot_analyzed_image ()

view images independently
ct.plot_images ()

save the images
ct.save_analyzed_image ()

or

ct.save_images ()

finally, save a PDF
ct.publish_pdf ()

5.8.3 Advanced Use

Using results_data

Using the ACR module in your own scripts? While the analysis results can be printed out, if you intend on using them
elsewhere (e.g. in an API), they can be accessed the easiest by using the results_data () method which returns a
ACRCTResult instance. For MRI this is results_data () method and ACRMRILargeResult respectively.

Continuing from above:

data = ct.results_datal()
data.ct_module.roi_radius_mm
and more

return as a dict
data_dict = ct.results_data(as_dict=True)
data_dict['ct_module']['rol_ radius_mm']

5.8. ACR Phantoms

105

pylinac Documentation, Release 3.8.2

5.8.4 APl Documentation

class pylinac.acr.ACRCT (folderpath: Union{str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence[_io.BytesIO]], check_uid: bool =
True)

Bases: pylinac.ct.CatPhanBase
Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

* check_uid (bool) — Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.
* FileNotFoundError — If no CT images are found in the folder

ct_calibration_module
alias of CTModule

low_contrast_module
alias of LowContrastModule

spatial_resolution_module
alias of SpatialResolutionModule

uniformity module
alias of UniformityModule

plot_analyzed_subimage (*args, **kwargs)
Plot a specific component of the CBCT analysis.

Parameters

* subimage ({ 'hu', 'un sp', 'lc', 'mtf', 'lin', 'prof'})—The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

T r
7

hu draws the HU linearity image.

un draws the HU uniformity image.

sp draws the Spatial Resolution image.

1c draws the Low Contrast image (if applicable).

mt £ draws the RMTF plot.

1in draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
* delta (bool)— Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

save_analyzed_subimage (*args, **kwargs)
Save a component image to file.

Parameters

e filename (str, file object)— The file to write the image to.

106 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* subimage (str)—See plot_analyzed_subimage () for parameter info.

analyze () — None
Analyze the ACR CT phantom

plot_analyzed_image (show: bool = True, **plt_kwargs) — matplotlib.figure.Figure
Plot the analyzed image

Parameters
* show — Whether to show the image.
* plt_kwargs — Keywords to pass to matplotlib for figure customization.

save_analyzed_image (filename: Union[str, pathlib.Path, _io.ByteslIO], **plt_kwargs) — None
Save the analyzed image to disk or stream

Parameters
e filename — Where to save the image to
* plt_kwargs — Keywords to pass to matplotlib for figure customization.

plot_images (show: bool = True, **plt_kwargs) — Dict[str, matplotlib.figure.Figure]
Plot all the individual images separately

Parameters
* show — Whether to show the images.
* plt_kwargs — Keywords to pass to matplotlib for figure customization.

save_images (directory: Union[pathlib.Path, str, None] = None, to_stream: bool = False,

**plt_kwargs) — List[Union[pathlib.Path, _io.BytesIO]]
Save separate images to disk or stream.

Parameters

e directory — The directory to write the images to. If None, will use current working
directory

* to_stream— Whether to write to stream or disk. If True, will return streams. Directory
is ignored in that scenario.

* plt_kwargs — Keywords to pass to matplotlib for figure customization.

find_phantom_roll (func=<function ACRCT.<lambda>>) — float
Determine the “roll” of the phantom.

Only difference of base method is that we sort the ROIs by size, not by being in the center since the two
we’re looking for are both right-sided.

results () — str
Return the results of the analysis as a string. Use with print().

results_data (as_dict=False) — Union[pylinac.acr ACRCTResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

publish_pdf (filename: Union/[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

. . — None . . o
Publish (print) a PDF containing the analysis and quantitative results.
Parameters

e filename ((str, file-like object })— The file to write the results to.

5.8. ACR Phantoms 107

pylinac Documentation, Release 3.8.2

* notes (str, list of strings) - Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘TrueBeam’} would
result in text in the PDF like: ——— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

catphan_size
The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin_slice() —int
Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.
Return type int

find_phantom_axis () -> (typing.Callable, typing.Callable)
We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly
function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

classmethod from_ demo_images ()
Construct a CBCT object from the demo images.

classmethod from_ url (url: str, check_uid: bool = True)
Instantiate a CBCT object from a URL pointing to a .zip object.

Parameters
* url (str)— URL pointing to a zip archive of CBCT images.

* check_uid (bool)—- Whether to enforce raising an error if more than one UID is found
in the dataset.

classmethod from_zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)
Construct a CBCT object and pass the zip file.

Parameters
e zip_ file (str, ZipFile)-Path to the zip file or a ZipFile object.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises

* FileExistsError : If zip_file passed was not a legitimate zip file.

108 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* FileNotFoundError : If no CT images are found in the folder

localize () — None

Find the slice number of the catphan’s HU linearity module and roll angle
mm_per_pixel

The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

class pylinac.acr.ACRCTResult (phantom_model: str, phantom_roll_deg: float,
origin_slice: int, num_images: int, ct_module:
pylinac.acr. CTModuleOutput, uniformity_module:
pylinac.acr.UniformityModuleOutput, low_contrast_module:
pylinac.acr.LowContrastModuleOutput, spa-

tial_resolution_module: pylinac.acr.SpatialResolutionModuleOutput)
Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
phantom_model = None
phantom_roll_deg = None

origin_slice = None

num_images = None

ct_module = None

uniformity _module = None
low_contrast _module = None

spatial_resolution_module = None

class pylinac.acr.CTModuleOutput (offset: int, roi_distance_from_center_mm: int,

roi_radius_mm: int, roi_settings: dict, rois: dict)
Bases: object

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.acr.UniformityModuleOutput (offset: int, roi_distance_from_center_mm: int,

roi_radius_mm: int, roi_settings: dict, rois: dict,

center_roi_stdev: float)
Bases: pylinac.acr.CTModuleOutput

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.acr.SpatialResolutionModuleOutput (offset: int,

roi_distance_from_center_mm.: int,
roi_radius_mm: int, roi_settings: dict,

rois: dict, lpmm_to_rmtf: dict)
Bases: pylinac.acr.CTModuleOutput

5.8. ACR Phantoms 109

pylinac Documentation, Release 3.8.2

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.acr.LowContrastModuleOutput (offset: int, roi_distance_from_center_mm: int,
roi_radius_mm: int, roi_settings: dict, rois:
dict, cnr: float)
Bases: pylinac.acr.CTModuleOutput
This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.acr.ACRMRILarge (folderpath: Union[str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence(_io.ByteslO]], check_uid:

bool = True)
Bases: pylinac.ct.CatPhanBase

Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

* check_uid (bool) — Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.
* FileNotFoundError — If no CT images are found in the folder

plot_analyzed_subimage (*args, **kwargs)
Plot a specific component of the CBCT analysis.

Parameters

e subimage ({ 'hu', 'un', 'sp', 'lc', 'mtf', 'lin', 'prof'})-The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

hu draws the HU linearity image.

— un draws the HU uniformity image.

— sp draws the Spatial Resolution image.

— lc draws the Low Contrast image (if applicable).

— mt f draws the RMTF plot.

— 1lin draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
* delta (bool) - Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

save_analyzed_subimage (*args, **kwargs)
Save a component image to file.

Parameters

e filename (str, file object)— The file to write the image to.

110 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* subimage (str)—See plot_analyzed_subimage () for parameter info.

localize () — None
Find the slice number of the catphan’s HU linearity module and roll angle

find phantom roll () — float
Determine the “roll” of the phantom. This algorithm uses the circular left-upper hole on slice 1 as the

reference
Returns float
Return type the angle of the phantom in degrees.

analyze () — None
Analyze the ACR CT phantom

plot_analyzed_image (show: bool = True, **plt_kwargs) — matplotlib.figure.Figure
Plot the analyzed image

Parameters
* show — Whether to show the image.
* plt_kwargs — Keywords to pass to matplotlib for figure customization.

plot_images (show: bool = True, **plt_kwargs) — Dict[str, matplotlib.figure.Figure]
Plot all the individual images separately

Parameters
* show — Whether to show the images.
* plt_kwargs — Keywords to pass to matplotlib for figure customization.

save_images (directory: Union[pathlib.Path, str, None] = None, to_stream: bool = False,
**plt_kwargs) — List[Union[pathlib.Path, _io.BytesIO]]
Save separate images to disk or stream.

Parameters

* directory — The directory to write the images to. If None, will use current working
directory

* to_stream— Whether to write to stream or disk. If True, will return streams. Directory
is ignored in that scenario.

* plt_kwargs — Keywords to pass to matplotlib for figure customization.

publish_pdf (filename: Union[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

: . — None . . o
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename ((str, file—-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: ———— Author: James Unit: TrueBeam

5.8. ACR Phantoms 111

pylinac Documentation, Release 3.8.2

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

results (as_str: bool = True) — Union[str, Tuple]
Return the results of the analysis as a string. Use with print().

results_data (as_dict: bool = False) — Union[pylinac.acr. ACRMRIResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

catphan_size
The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin_slice () — int
Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.
Return type int

find_phantom_axis () -> (typing.Callable, typing.Callable)
We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly
function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

classmethod from_demo_images ()

Construct a CBCT object from the demo images.

classmethod from_url (url: str, check_uid: bool = True)

Instantiate a CBCT object from a URL pointing to a .zip object.
Parameters
e url (str) - URL pointing to a zip archive of CBCT images.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

classmethod from_zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)

Construct a CBCT object and pass the zip file.
Parameters
e zip file(str, ZipFile)— Path to the zip file or a ZipFile object.

* check_uid (bool) - Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* FileExistsError : If zip_file passed was not a legitimate zip file.

* FileNotFoundError : If no CT images are found in the folder

112

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

mm_per_pixel
The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

save_analyzed_image (filename: Union[str, pathlib.Path], **kwargs) — None
Save the analyzed summary plot.

Parameters
e filename (str, file object)— The name of the file to save the image to.
* kwargs — Any valid matplotlib kwargs.

class pylinac.acr.ACRMRIResult (phantom_model: str, phantom_roll_deg: float, origin_slice: int,
num_images: int, slicel: pylinac.acrMRSlicel ModuleOutput,
slicell: pylinac.acrMRSlicel IModuleOutput, unifor-
mity_module: pylinac.acr.MRUniformityModuleOutput, geomet-

ric_distortion_module: pylinac.acMRGeometricDistortionModuleOutput)
Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
phantom _model = None
phantom_roll _deg = None

origin_slice = None

num_images = None

slicel = None

slicell = None

uniformity module = None
geometric_distortion_module = None

class pylinac.acr.MRSlicellModuleOutput (offset: int, roi_settings: dict, rois: dict,
bar_difference_mm: float, slice_shift_mm: float)
Bases: object

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.acr.MRSlicelModuleOutput (offset: int, roi_settings: dict, rois: dict,
bar_difference_mm: float, slice_shift_mm: float,
measured_slice_thickness_mm: float, row_mtf_50:

float, col_mtf_50: float)
Bases: object

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

5.8. ACR Phantoms 113

pylinac Documentation, Release 3.8.2

class pylinac.acr.MRUniformityModuleOutput (offset: int, roi_settings: dict, rois: dict,
ghost_roi_settings: dict, ghose_rois: dict, psg:
float, ghosting_ratio: float, piu_passed: bool,

piu: float)
Bases: object

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.acr.MRGeometricDistortionModuleOutput (offset: int, profiles: dict, dis-

tances: dict)
Bases: object

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

5.9 Quart

New in version 3.2.

5.9.1 Overview

The Quart module provides routines for automatically analyzing DICOM images of the Quart DVT phantom typically
used with the Halcyon linac system. It can load a folder or zip file of images, correcting for translational and rotational
offsets.

New in version 3.2.

Warning: These algorithms have only a limited amount of testing data and results should be scrutinized. Further,
the algorithm is more likely to change in the future when a more robust test suite is built up. If you’d like to submit
data, enter it here.

5.9.2 Typical Use

The Quart phantom analysis follows a similar pattern of load/analyze/output as the rest of the library. Unlike the
CatPhan analysis, customization is not a goal, as the phantoms and analyses are much more well-defined. L.e. there’s
less of a use case for custom phantoms in this scenario.

To use the Quart analysis, import the class:

from pylinac import QuartDVT
from pylinac.quart import QuartDVT # equivalent import

And then load, analyze, and view the results:

* Load images — Loading can be done with a directory or zip file:

quart_folder = r"C:/CT/Quart/Sept 2021"
quart = QuartDVT (quart_folder)

114 Chapter 5. Contributing

https://forms.gle/RBR5ubFvjogE9iC67

pylinac Documentation, Release 3.8.2

or load from zip:

quart_folder = r"C:/CT/Quart/Sept 2021.zip" # this contains all the DICOM files,_,
—of the scan

quart = QuartDVT.from_zip (quart_folder)

¢ Analyze — Analyze the dataset:

quart.analyze ()

* View the results — Reviewing the results can be done in text or dict format as well as images:

print text to the console
print (quart.results())

view analyzed image summary
quart.plot_analyzed_image ()

view images independently
quart.plot_images ()

save the images

quart .save_images ()

finally, save a PDF
quart.publish_pdf ('myquart.pdf')

5.9.3 Advanced Use
Using results_data

Using the Quart module in your own scripts? While the analysis results can be printed out, if you intend on using them
elsewhere (e.g. in an API), they can be accessed the easiest by using the results_data () method which returns a
QuartDVTResult instance.

Continuing from above:

data quart.results_data()
data.hu_module.roi_radius_mm
and more

return as a dict
data_dict = quart.results_data(as_dict=True)
data_dict['hu module']['roi_ radius_mm']

5.9.4 API Documentation

class pylinac.quart.QuartDVT (folderpath: Union[str, Sequence[str], pathlib.Path, Se-
quence[pathlib.Path], Sequence[_io.BytesIO]], check_uid: bool =
True)

Bases: pylinac.ct.CatPhanBase

A class for loading and analyzing CT DICOM files of a Quart phantom that comes with the Halcyon. Analyzes:
HU Uniformity, Image Scaling & HU Linearity.

Parameters

* folderpath (str, list of strings, or Path to folder) — String that
points to the CBCT image folder location.

5.9. Quart 115

pylinac Documentation, Release 3.8.2

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* NotADirectoryError — If folder str passed is not a valid directory.
* FileNotFoundError —If no CT images are found in the folder

static run_demo (show: bool = True)
Run the Quart algorithm with a head dataset.

analyze (hu_tolerance: Union[int, float] = 40, scaling_tolerance: Unionf[int, float] = 1, thick-

ness_tolerance: Union[int, float] = 0.2, cnr_threshold: Union[int, float] = 5)
Single-method full analysis of CBCT DICOM files.

Parameters
* hu_tolerance (int) - The HU tolerance value for both HU uniformity and linearity.

* scaling_tolerance (float, int)-The scalingtolerancein mm of the geometric
nodes on the HU linearity slice (CTP404 module).

* thickness_tolerance (float, int)-The tolerance of the thickness calculation
in mm, based on the wire ramps in the CTP404 module.

Warning: Thickness accuracy degrades with image noise; i.e. low mAs images are
less accurate.

¢ low_contrast_tolerance (int)— The number of low-contrast bubbles needed to
be “seen” to pass.

* cnr_threshold (float, int) — Deprecated since version 3.0: Use visibility pa-
rameter instead.

The threshold for “detecting” low-contrast image. See RTD for calculation info.

* zip_after (bool) - If the CT images were not compressed before analysis and this is
set to true, pylinac will compress the analyzed images into a ZIP archive.

* contrast_method — The contrast equation to use. See Low contrast.

* visibility threshold — The threshold for detecting low-contrast ROIs. Use in-
stead of cnr_threshold. Follows the Rose equation. See Visibility.

plot_analyzed_image (show: bool = True, **plt_kwargs) — None
Plot the images used in the calculation and summary data.

Parameters
* show (bool)— Whether to plot the image or not.

* plt_kwargs (dict) — Keyword args passed to the plt.figure() method. Allows one to
set things like figure size.

plot_analyzed subimage (*args, **kwargs) — None
Plot a specific component of the CBCT analysis.

Parameters

e subimage ({ 'hu', 'un', 'sp', 'lc', 'mtf', 'lin', 'prof'})-The
subcomponent to plot. Values must contain one of the following letter combinations. E.g.
linearity, linear, and 1in will all draw the HU linearity values.

116 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

— hu draws the HU linearity image.

— un draws the HU uniformity image.

— sp draws the Spatial Resolution image.

— lc draws the Low Contrast image (if applicable).

— mt f draws the RMTF plot.

— 1lin draws the HU linearity values. Used with delta.

— prof draws the HU uniformity profiles.
* delta (bool) - Only for use with 1in. Whether to plot the HU delta or actual values.
* show (bool)— Whether to actually show the plot.

results (as_str: bool = True) — Union[str, Tuple[str, ...]]
Return the results of the analysis as a string. Use with print().

results_data (as_dict: bool = False) — Union[pylinac.quart.QuartDVTResult, dict]
Return results in a data structure for more programmatic use.

plot_images (show: bool = True, **plt_kwargs) — Dict[str, matplotlib.figure.Figure]
Plot all the individual images separately.

Parameters
* show — Whether to show the images.
* plt_kwargs — Keywords to pass to matplotlib for figure customization.

save_images (directory: Union[pathlib.Path, str, None] = None, to_stream: bool = False,

*¥plt_kwargs) — Union[List[pathlib.Path], Dict[str, _io.BytesIO]]
Save separate images to disk or stream.

Parameters

* directory — The directory to write the images to. If None, will use current working
directory

* to_stream— Whether to write to stream or disk. If True, will return streams. Directory
is ignored in that scenario.

* plt_kwargs — Keywords to pass to matplotlib for figure customization.

publish_pdf (filename: Union/[str, pathlib.Path], notes: Optional[str] = None, open_file: bool =
False, metadata: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)

. . — None - . .
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) - Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘TrueBeam’} would
result in text in the PDF like: ———— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

5.9. Quart 117

pylinac Documentation, Release 3.8.2

catphan_size
The expected size of the phantom in pixels, based on a 20cm wide phantom.

find origin_slice () —int
Using a brute force search of the images, find the median HU linearity slice.

This method walks through all the images and takes a collapsed circle profile where the HU linearity ROIs
are. If the profile contains both low (<800) and high (>800) HU values and most values are the same (i.e.
it’s not an artifact), then it can be assumed it is an HU linearity slice. The median of all applicable slices is
the center of the HU slice.

Returns The middle slice of the HU linearity module.
Return type int

find_phantom_axis () -> (typing. Callable, typing.Callable)
We fit all the center locations of the phantom across all slices to a 1D poly function instead of finding them
individually for robustness.

Normally, each slice would be evaluated individually, but the RadMachine jig gets in the way of detecting
the HU module (). To work around that in a backwards-compatible way we instead look at all the slices
and if the phantom was detected, capture the phantom center. ALL the centers are then fitted to a 1D poly
function and passed to the individual slices. This way, even if one slice is messed up (such as because of
the phantom jig), the poly function is robust to give the real center based on all the other properly-located
positions on the other slices.

find_phantom_roll (func: Optional[Callable] = None) — float
Determine the “roll” of the phantom.

This algorithm uses the two air bubbles in the HU slice and the resulting angle between them.
Parameters func — A callable to sort the air ROIs.
Returns float
Return type the angle of the phantom in degrees.

classmethod from_demo_images ()
Construct a CBCT object from the demo images.

classmethod from_url (url: str, check_uid: bool = True)
Instantiate a CBCT object from a URL pointing to a .zip object.

Parameters
* url (str)— URL pointing to a zip archive of CBCT images.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

classmethod from zip (zip_file: Union[str, zipfile.ZipFile, BinarylO], check_uid: bool = True)
Construct a CBCT object and pass the zip file.

Parameters
e zip file(str, ZipFile)-Path to the zip file or a ZipFile object.

* check_uid (bool)— Whether to enforce raising an error if more than one UID is found
in the dataset.

Raises
* FileExistsError : If zip_file passed was not a legitimate zip file.

¢ FileNotFoundError : If no CT images are found in the folder

118 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

localize () — None
Find the slice number of the catphan’s HU linearity module and roll angle

mm_per_pixel
The millimeters per pixel of the DICOM images.

num_images
The number of images loaded.

save_analyzed_image (filename: Union[str, pathlib.Path], **kwargs) — None
Save the analyzed summary plot.

Parameters
e filename (str, file object)— The name of the file to save the image to.
* kwargs — Any valid matplotlib kwargs.

save_analyzed_subimage (filename: Union[str, BinarylO], subimage: str = ’hu’, **kwargs) —

Optional[matplotlib.figure.Figure]
Save a component image to file.

Parameters
e filename (str, file object)— The file to write the image to.

* subimage (str)—See plot_analyzed_subimage () for parameter info.

class pylinac.quart.QuartHUModule (catphan, offset: int, hu_tolerance: float, thick-

ness_tolerance: float, scaling_tolerance: float)
Bases: pylinac.ct.CTP404CP504

Parameters
e catphan (~pylinac.cbct.CatPhanBase instance.) —
e offset (int) -
e hu_tolerance (float)—
* thickness_tolerance (float) -
* scaling tolerance (float)-—

meas_slice_thickness
The average slice thickness for the 4 wire measurements in mm.

signal_to_noise
SNR = (HU + 1000) / sigma, where HU is the mean HU of a chosen insert and sigma is the stdev of the
HU insert. We choose to use the Polystyrene as the target HU insert

Type Calculate the SNR based on the suggested procedure in the manual

contrast_to_noise
CNR = abs(HU_target - HU_background) / sigma, where HU_target is the mean HU of a chosen insert,
HU_background is the mean HU of the background insert and sigma is the stdev of the HU background.
We choose to use the Polystyrene as the target HU insert and Acrylic (base phantom material) as the
background

Type Calculate the CNR based on the suggested procedure in the manual

is_phantom_in_view () — bool
Whether the phantom appears to be within the slice.

lev
The low-contrast visibility

5.9. Quart 119

pylinac Documentation, Release 3.8.2

passed_geometry
Returns whether all the line lengths were within tolerance.

passed_hu
Boolean specifying whether all the ROIs passed within tolerance.

passed_thickness
Whether the slice thickness was within tolerance from nominal.

phan_center
Determine the location of the center of the phantom.

phantom_roi
Get the Scikit-Image ROI of the phantom

The image is analyzed to see if: 1) the CatPhan is even in the image (if there were any ROIs detected) 2)
an ROl is within the size criteria of the catphan 3) the ROI area that is filled compared to the bounding box
area is close to that of a circle

plot (axis: matplotlib.axes._axes.Axes)
Plot the image along with ROIs to an axis

plot_1linearity (axis: Optional[matplotlib.axes._axes.Axes] = None, plot_delta: bool = True) —
tuple
Plot the HU linearity values to an axis.

Parameters

* axis (None, matplotlib.Axes) — The axis to plot the values on. If None, will
create a new figure.

* plot_delta (bool) — Whether to plot the actual measured HU values (False), or the
difference from nominal (True).

plot_rois (axis: matplotlib.axes._axes.Axes) — None
Plot the ROIs onto the image, as well as the background ROIs

preprocess (catphan) — None
A preprocessing step before analyzing the CTP module.

Parameters catphan (~pylinac.cbct.CatPhanBase instance.) —

slice_num
The slice number of the spatial resolution module.

Returns

Return type float

class pylinac.quart.QuartUniformityModule (catphan, tolerance: Optional[float] = None, off-

set: int = 0, clear_borders: bool = True)
Bases: pylinac.ct.CTP486

Class for analysis of the Uniformity slice of the CTP module. Measures 5 ROIs around the slice that should all
be close to the same value.

integral_non_uniformity
/Iwww.tandfonline.com/doi/pdf/10.3109/0284186X.2011.590525

Type The Integral Non-Uniformity. Elstrom et al equation 1. https

is_phantom_in_view () — bool
Whether the phantom appears to be within the slice.

120

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

overall_passed
Boolean specifying whether all the ROIs passed within tolerance.

phan_center
Determine the location of the center of the phantom.

phantom_roi
Get the Scikit-Image ROI of the phantom

The image is analyzed to see if: 1) the CatPhan is even in the image (if there were any ROIs detected) 2)
an ROl is within the size criteria of the catphan 3) the ROI area that is filled compared to the bounding box
area is close to that of a circle

plot (axis: matplotlib.axes._axes.Axes)
Plot the image along with ROIs to an axis

plot_profiles (axis: Optional[matplotlib.axes._axes.Axes] = None) — None
Plot the horizontal and vertical profiles of the Uniformity slice.

Parameters axis (None, matplotlib.Axes)— The axis to plot on; if None, will create
a new figure.

plot_rois (axis: matplotlib.axes._axes.Axes) — None
Plot the ROIs to the axis.

preprocess (catphan)
A preprocessing step before analyzing the CTP module.

Parameters catphan (~pylinac.cbct.CatPhanBase instance.) —

slice_num
The slice number of the spatial resolution module.

Returns
Return type float

uniformity index
/Iwww.tandfonline.com/doi/pdf/10.3109/0284186X.2011.590525

Type The Uniformity Index. Elstrom et al equation 2. https

class pylinac.quart.QuartGeometryModule (catphan, tolerance: Optional[float] = None, offset:

int = 0, clear_borders: bool = True)
Bases: pylinac.ct.CatPhanModule

Class for analysis of the Uniformity slice of the CTP module. Measures 5 ROIs around the slice that should all
be close to the same value.

plot_rois (axis: matplotlib.axes._axes.Axes)
Plot the ROIs to the axis.

distances () — Dict[str, float]
The measurements of the phantom size for the two lines in mm

is_phantom_in_view () — bool
Whether the phantom appears to be within the slice.

phan_center
Determine the location of the center of the phantom.

phantom_roi
Get the Scikit-Image ROI of the phantom

5.9. Quart 121

pylinac Documentation, Release 3.8.2

The image is analyzed to see if: 1) the CatPhan is even in the image (if there were any ROIs detected) 2)
an ROI is within the size criteria of the catphan 3) the ROI area that is filled compared to the bounding box
area is close to that of a circle

plot (axis: matplotlib.axes._axes.Axes)
Plot the image along with ROIs to an axis

preprocess (catphan)
A preprocessing step before analyzing the CTP module.

Parameters catphan (~pylinac.cbct.CatPhanBase instance.) —

roi dist_mm
aliasof builtins.float

roi_radius_mm
aliasof builtins.float

slice_num
The slice number of the spatial resolution module.

Returns

Return type float

class pylinac.quart.QuartDVTResult (phantom_model: str, phantom_roll_deg: float,
origin_slice: int, num_images: int, hu_module:
pylinac.quart. QuartHUModuleOutput, unifor-

mity_module: pylinac.quart. QuartUniformityModuleOutput,

geometric_module: pylinac.quart. QuartGeometryModuleOutput)
Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
phantom_model = None
phantom_roll_deg = None

origin_slice = None

num_images = None

hu_module = None

uniformity_module = None
geometric_module = None

class pylinac.quart.QuartHUModuleOutput (offset: int, roi_settings: dict, rois: dict, mea-
sured_slice_thickness_mm: float, signal_to_noise:

float, contrast_to_noise: float)
Bases: object

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.quart.QuartUniformityModuleOutput (offset: int, roi_settings: dict, rois: dict,

passed: bool)
Bases: object

122 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

class pylinac.quart.QuartGeometryModuleOutput (offset: int, roi_settings: dict, rois: dict,

distances: dict)
Bases: object

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

5.10 Log Analyzer

5.10.1 Overview

The log analyzer module reads and parses Varian linear accelerator machine logs, both Dynalogs and Trajectory logs.
The module also calculates actual and expected fluences as well as performing gamma evaluations. Data is structured
to be easily accessible and easily plottable.

Unlike most other modules of pylinac, the log analyzer module has no end goal. Data is parsed from the logs, but what
is done with that info, and which info is analyzed is up to the user.

Features:

Analyze Dynalogs or Trajectory logs - Either platform is supported. Tlog versions 2.1, 3.0, and 4.0 are
supported.

Read in both .bin and .txt Trajectory log files - Read in the machine data from both .bin and .txt files to get
all the information recorded. See the t xt attribute.

Save Trajectory log data to CSV - The Trajectory log binary data format does not allow for easy export of
data. Pylinac lets you do that so you can use Excel or other software that you use with Dynalogs.

Plot or analyze any axis - Every data axis (e.g. gantry, yl, beam holds, MLC leaves) can be accessed and
plotted: the actual, expected, and even the difference.

Calculate fluences and gamma - Besides reading in the MLC positions, pylinac calculates the actual and
expected fluence as well as the gamma map; DTA and threshold values are adjustable.

Anonymize logs - Both dynalogs and trajectory logs can be “anonymized” by removing the Patient ID from the
filename(s) and file data.

5.10.2 Concepts

Because the 1og_analyzer module functions without an end goal, the data has been formatted for easy exploration.
However, there are a few concepts that should be grasped before diving in.

Log Sections - Upon log parsing, all data is placed into data structures. Varian has designated 4 sections for
Trajectory logs: Header, Axis Data, Subbeams, and CRC. The Subbeams are only applicable for auto-sequenced
beams and all v3.0 logs, and the CRC is specific to the Trajectory log. The Header and Axis Data however, are
common to both Trajectory logs and Dynalogs.

5.10.

Log Analyzer 123

pylinac Documentation, Release 3.8.2

Note: Dynalogs do not have explicit sections like the Trajectory logs, but pylinac formats them to
have these two data structures for consistency.

* Leaf Indexing & Positions - Varian leaf identification is 1-index based, over against Python’s 0-based indexing.
Thus, indexing the first MLC leaf would be [1],not [0].

Warning: When slicing or analyzing leaf data, keep the Varian 1-index base in mind.

Leaf data is stored in a dictionary, with the leaf number as the key, from 1 up to the number of MLC leaves. E.g.
if the machine has a Millennium 120 standard MLC model, leaf data will have 120 dictionary items from 1 to
120. Leaves from each bank have an offset of half the number of leaves. IL.e. leaves A1 and B1 =1 and 61. Thus,
leaves 61-120 correspond to the B-bank, while leaves 1-60 correspond to the A-bank. This can be described by
a function (A4, B,) = (n,n + Nicaves/2), where n is the leaf number and Njeqyes is the number of leaves.

¢ Units - Units follow the Trajectory log specification: linear axes are in cm, rotational axes in degrees, and MU
for dose.

Note: Dynalog files are inherently in mm for collimator and gantry axes, tenths of degrees for rotational
axes, and MLC positions are not at isoplane. For consistency, Dynalog values are converted to Trajectory log
specs, meaning linear axes, both collimator and MLCs are in cm at isoplane, and rotational axes are in degrees.
Dynalog MU is always from 0 to 25000 no matter the delivered MU (i.e. it’s relative), unless it was a VMAT
delivery, in which case the gantry position is substituted in the dose fraction column.

Warning: Dynalog VMAT files replace the dose fraction column with the gantry position. Unfortunately,
because of the variable dose rate of Varian linacs the gantry position is not a perfect surrogate for dose, but
there is no other choice. Thus, fluence calculations will use the relative gantry movement as the dose in
fluence calculations.

« All data Axes are similar - Log files capture machine data in “control cycles”, aka “snapshots” or “heartbeats”.
Let’s assume a log has captured 100 control cycles. Axis data that was captured will all be similar (e.g. gantry,
collimator, jaws). They will all have an actual and sometimes an expected value for each cycle. Pylinac formats
these as 1D numpy arrays along with a difference array if applicable. Each of these arrays can be quickly plotted
for visual analysis. See Ax 1 s for more info.

5.10.3 Running the Demos

As usual, the module comes with demo files and methods:

from pylinac import Dynalog
Dynalog.run_demo ()

Which will output the following:

Results of file: |
—C:\Users\James\Dropbox\Programming\Python\Projects\pylinac\pylinac\demo_files\AQA.
<~>dlg

Average RMS of all leaves: 0.037 cm

Max RMS error of all leaves: 0.076 cm

(continues on next page)

124 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

95th percentile error: 0.088 cm
Number of beam holdoffs: 20
Gamma pass %: 18.65

Gamma average: 0.468

Actual Image Expected Image Gamma Map Lo
= 0 — .

0.8
0.6
0.4

0.2

= = 0.0
0 Gatiha Mhetdgram O L3R KRB A O Leaf RS (mm)

106 -
: oo e
1 1p00 I 067
] 800 I
] 0.4
-l W
.l I
5]
10° 188] , o_j—,——lF—Jlo.o T
0.0 0.5 1.0 0.000 0.025 0.050 0.075 0 50 100

Your file location will be different, but the values should be the same. The same can be done using the demo Trajectory
log:

from pylinac import TrajectorylLog
TrajectoryLog.run_demo ()

Which will give:

Results of file: |
—C:\Users\James\Dropbox\Programming\Python\Projects\pylinac\pylinac\demo_files\Tlog.
—bin

Average RMS of all leaves: 0.001 cm

Max RMS error of all leaves: 0.002 cm

95th percentile error: 0.002 cm

Number of beam holdoffs: 19

Gamma pass %: 100.00
Gamma average: 0.002

Note that you can also save data in a PDF report:

5.10. Log Analyzer 125

pylinac Documentation, Release 3.8.2

Actual Image Expected Image Gamma Map

0 Gatiha MHetdgm © (L3R KRB A O Leaf RS (mm)

106 50P00 ~
- 0.p20 ~ i
e |
I
o TR,
I obos JLULLLLLL DL
10° _-—F T T 0 ‘m_QTDOO

o
o

0.5 1.0 0.000 0.002 0 50 100

126 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

tlog =
tlog.publish_pdf ('mytlog.pdf")

5.10.4 Loading Data
Loading Single Logs

Logs can be loaded two ways. The first way is through the main helper function Zoad_log ().

Note: If you’ve used pylinac versions <1.6 the helper function is new and can be a replacement for MachineLog
and MachineLogs, depending on the context as discussed below.

from pylinac import load_log

log_path = "C:/path/to/tlog.bin"
log = load_log(log_path)

In addition, a folder, ZIP archive, or URL can also be passed:

log2 = load_log('http://myserver.com/logs/2.dlg")

Note: If loading from a URL the object can be a file or ZIP archive.

Pylinac will automatically infer the log type and load it into the appropriate data structures for analysis. The
load_1log () function is a convenient wrapper around the classes within the log analysis module. However, logs
can be instantiated a second way: directly through the classes.

from pylinac import Dynalog, TrajectoryLog

dlog_path = "C:/path/to/dlog.dlg"
dlog = Dynalog(dlog_path)

tlog_path = "C:/path/to/tlog.bin"
tlog = TrajectoryLog(tlog_path)

Loading Multiple Logs

Loading multiple files is also possible using the 1oad_1og () function as listed above. The logs can also be directly
instantiated by using MachineLogs. Acceptable inputs include a folder and zip archive.

from pylinac import load_log, MachineLogs
path_to_folder = "C:/path/to/dir"

from folder; equivalent

logs = MachinelLogs (path_to_folder)

logs = load_log(path_to_folder)

from ZIP archive
logs = load_log('path/to/logs.zip")

5.10. Log Analyzer 127

pylinac Documentation, Release 3.8.2

5.10.5 Working with the Data

Working with the log data is straightforward once the data structures and Axes are understood (See Concepts for more
info). Pylinac follows the data structures specified by Varian for trajectory logs, with a Header and Axis Data structure,
and possibly a Subbeams structure if the log is a Trajectory log and was autosequenced. For accessible attributes, see
TrajectoryLog. The following sections explore each major section of log data and the data structures pylinac
creates to assist in data analysis.

Note: It may be helpful to also read the log specification format in parallel with this guide. It is easier to see that
pylinac follows the log specifications and where the info comes from. Log specifications are on My Varian.com.

Working with the Header

Header information is essentially anything that isn’t axis measurement data; it’s metadata about the file, format, ma-
chine configuration, etc. Because of the different file formats, there are separate classes for Trajectory log and Dynalog
headers. The classes are:

* TrajectoryLogHeader
* DynalogHeader

Header attributes are listed in the class API docs by following the above links. For completeness they are also listed
here. For Trajectory logs:

* header
* version
* header_size
* sampling_interval
* num_axes
* axis_enum
* samples_per_axis
* num_mlc_leaves
* axis_scale
* num_subbeams
e is_truncated
* num_snapshots
* mlc_model
For Dynalogs the following header information is available:
* version
* patient_name
* plan_filename
e tolerance
* num _mlc_leaves

e clinac_scale

128 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Example

Let’s explore the header of the demo trajectory log:

>>> tlog = TrajectoryLog.from_demo ()
>>> tlog.header.header

'VOSTL'

>>> tlog.header.version

2.1

>>> tlog.header.num_subbeams

2

Working with Axis Data

Axis data is all the information relating to the measurements of the various machine axes and is accessible under
the axis_data attribute. This includes the gantry, collimator, MLCs, etc. Trajectory logs capture more informa-
tion than Dynalogs, and additionally hold the expected positions not only for MLCs but also for all axes. Every
measurement axis has Axis as its base; they all have similar methods to access and plot the data (see Plotting &
Saving Axes/Fluences). However, not all attributes are axes. Pylinac adds properties to the axis data structure for
ease of use (e.g. the number of snapshots) For Trajectory logs the following attributes are available, based on the

TrajectoryLogAxisData class:
e collimator
* gantry

* jaws

Note: The jaws attribute is a data structure to hold all 4 jaw axes; see JawStruct

e couch

Note: The couch attribute is a data structure to hold lateral, longitudinal, etc couch positions; see

CouchStruct

* mu

* beam_hold

* control_point
e carriage_A

* carriage_B

* mlc

Note: The m1c attribute is a data structure to hold leaf information; see MI.C for attributes and the Working

with MLC Data section for more info.

Dynalogs have similar attributes, derived from the DynalogAxisData class:

e collimator

* gantry

5.10. Log Analyzer

129

pylinac Documentation, Release 3.8.2

* jaws

Note: The jaws attribute is a data structure to hold all 4 jaw axes; see JawStruct

* num_snapshots

* mu

* beam _hold

* beam on

* previous_segment_num
* previous_dose_index
* next_dose_index

* carriage A

* carriage_B

e mlc

Note: The m1c attribute is a data structure to hold leaf information; see MI.C for attributes and the Working
with MLC Data section for more info.

Example

Let’s access a few axis data attributes:

>>> log = Dynalog.from_demo ()
>>> log.axis_data.mu.actual # a numpy array

array ([0, 100, .
>>> log.axis_data.num_snapshots
99

>>> log.axis_data.gantry.actual
array ([180, 180, 180,

Working with MLC Data

Although MLC data is acquired and included in Trajectory logs and Dynalogs, it is not always easy to parse. Addi-
tionally, a physicist may be interested in the MLC metrics of a log (RMS, etc). Pylinac provides tools for accessing
MLC raw data as well as helper methods and properties via the MLC class. Note that this class is consistent between
Trajectory logs and Dynalogs. This class is reachable through the axis_data attribute as m1c.

Accessing Leaf data

Leaf data for any leaf is available under the 1eaf_axes attribute which is a dict. The leaves are keyed by the leaf
number and the value is an Ax1s. Example:

130 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

>>> log = Dynalog.from_demo ()

>>> log.axis_data.mlc.leaf_axes[1l].actual # numpy array of the 'actual' values for,
—~leaf #1

array ([7.56374,

>>> log.axis_data.mlc.leaf_axes[84].difference # actual values minus the planned,
—~values for leaf 84

array ([-0.001966,

MLC helper methods/properties

Beyond direct MLC data, pylinac provides a number of helper methods and properties to make working with MLC
data easier and more helpful. All the methods are listed in the ML C class, but some examples of use are given here:

>>> log = Dynalog.from_demo ()

>>> log.axis_data.mlc.get_error_percentile (percentile=95) # get an MLC error,
—percentile value

0.08847

>>> log.axis_data.mlc.leaf_moved(12) # did leaf 12 move during treatment?
False

>>> log.axis_data.mlc.get_RMS_avg () # get the average RMS error

0.03733

>>> log.axis_data.mlc.get_RMS_avg('A') # get the average RMS error for bank A
0.03746

>>> log.axis_data.mlc.num_leaves # the number of MLC leaves

120

>>> log.axis_data.mlc.num_moving_leaves # the number of leaves that moved during,,
—treatment
60

Working with Fluences

Fluences created by the MLCs can also be accessed and viewed. Fluences are accessible under the fluence attribute.
There are three subclasses that handle the fluences: The fluence actually delivered is in Act ualFluence, the fluence
planned is in ExpectedFluence, and the gamma of the fluences is in GammaFluence. Each fluence must be
calculated, however pylinac makes reasonable defaults and has a few shortcuts. The actual and expected fluences can
be calculated to any resolution in the leaf-moving direction. Some examples:

>>> log = Dynalog.from_demo ()

>>> log.fluence.actual.calc_map () # calculate the actual fluence; returns a numpy,
—array

array ([0, O,

>>> log.fluence.expected.calc_map (resolution=1) # calculate at Imm resolution
array ([0, O,

>>> log.fluence.gamma.calc_map(distTA=0.5, doseTA=1, resolution=0.1) # change the_
—gamma criteria

array ([0, O,

>>> log.fluence.gamma.pass_prcnt # the gamma passing percentage
99.82

>>> log.fluence.gamma.avg_gamma # the average gamma value
0.0208

5.10. Log Analyzer 131

pylinac Documentation, Release 3.8.2

Plotting & Saving Axes/Fluences

Each and every axis of the log can be accessed as a numpy array and/or plotted. For each axis the “actual” array/plot
is always available. Dynalogs only have expected values for the MLCs. Trajectory logs have the actual and expected
values for all axes. Additionally, if an axis has actual and expected arrays, then the difference is also available.

Example of plotting the MU actual:

import pylinac

log = pylinac.TrajectoryLog.from_demo ()
log.axis_data.mu.plot_actual ()

175 A

150 A

125 -

100 A

75

50 A1

25 A

0 1000 2000 3000 4000 5000

Plot the Gantry difference:

’log.axis_data.gantry.plot_difference()

Axis plots are just as easily saved:

’log.axis_data.gantry.save_plot_difference(filename:'qantry diff.png'")

Now, lets plot the actual fluence:

log.fluence.actual.calc_map ()
log.fluence.actual.plot_map ()

132 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

175 A

150 A

125 -

100 A

75

50 A

25 A

0 1000 2000 3000 4000 5000

5.10. Log Analyzer 133

pylinac Documentation, Release 3.8.2

0 500 1000 1500 2000 2500 3000 3500

134 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

And the fluence gamma. But note we must calculate the gamma first, passing in any DoseTA or DistTA parameters:

log.fluence.gamma.calc_map ()
log.fluence.gamma.plot_map ()

— 1.0

- 0.8

- 0.6

0 500 1000 1500 2000 2500 3000 3500

Additionally, you can calculate and view the fluences of subbeams if you’re working with trajectory logs:

log.subbeams [0] .fluence.gamma.calc_map ()
log.subbeams[0] .fluence.actual.plot_map ()

5.10.6 Converting Trajectory logs to CSV

If you already have the log files, you obviously have a record of treatment. However, trajectory logs are in binary
format and are not easily readable without tools like pylinac. You can save trajectory logs in a more readable format
through the to_csv () method. This will write the log to a comma-separated variable (CSV) file, which can be
read with Excel and many other programs. You can do further or specialized analysis with the CSV files if you wish,
without having to use pylinac:

log = TrajectoryLog.from_demo ()
log.to_csv ()

5.10. Log Analyzer 135

pylinac Documentation, Release 3.8.2

0 500 1000 1500 2000 2500 3000 3500

136 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.10.7 Anonymizing Logs

Machine logs can be anonymized two ways. The first is using the anonymize () method, available to both Trajectory
logs and Dynalogs. Example script:

tlog = TrajectorylLog.from_demo ()
tlog.anonymize ()

dlog = Dynalog.from_demo ()
dlog.anonymize ()

The other way is the use the module function anonymize (). This function will anonymize a single log file or a
whole directory. If you plan on anonymizing a lot of logs, use this method as it is threaded and is much faster:

from pylinac.log_analyzer import anonymize

log_file = 'path/to/tlog.bin'
anonymize (log_file)
log_dir = 'path/to/log/folder'

anonymize (log_dir) # VERY fast

5.10.8 Batch Processing
Batch processing/loading of log files is helpful when dealing with one file at a time is too cumbersome. Pylinac allows

you to load logs of an entire directory via MachineLogs; individual log files can be accessed, and a handful of batch
methods are included.

Example

Let’s assume all of your logs for the past week are in a folder. You’d like to quickly see what the average gamma is of
the files:

>>> from pylinac import MachineLogs

>>> log_dir = r"C:\path\to\log\directory"
>>> logs = Machinelogs (log_dir)

>>> logs.avg_gamma (resolution=0.2)

0.03 # or whatever

You can also append to MachineLogs to have two or more different folders combined:

>>> other_log_dir = r"C:\different\path"
>>> logs.append (other_log_dir)

Trajectory logs in a MachineLogs instance can also be converted to CSV, just as for a single instance of TrajectoryLog:

>>> logs.to_csv () # only converts trajectory logs; dynalogs are already basically,,
—~CSV files

Note: Batch processing methods (like avg _gamma () can take a while if numerous logs have been loaded, so be
patient. You can also use the verbose=True argument in batch methods to see how the process is going.

5.10. Log Analyzer 137

pylinac Documentation, Release 3.8.2

5.10.9 API Documentation
Main classes

These are the classes a typical user may interface with.

pylinac.log_analyzer.load_log (file_or_dir: str, exclude_beam_off: bool = True, recursive:
bool = True) — Union[pylinac.log_analyzer.TrajectoryLog,

pylinac.log_analyzer.Dynalog, pylinac.log_analyzer.MachineLogs]
Load a log file or directory of logs, either dynalogs or Trajectory logs.

Parameters

*» file_or_dir (str)— String pointing to a single log file or a directory that contains log
files.

* exclude_beam off (bool) - Whether to include snapshots where the beam was off.

* recursive (bool)— Whether to recursively search a directory. Irrelevant for single log
files.

Returns MachinelLogs.
Return type One of Dynalog, TrajectoryLog,

pylinac.log_analyzer.anonymize (source: str, inplace: bool = False, destination: bool = None,

)) o recursive: bool = True)) o
Quickly anonymize an individual log or directory of logs. For directories, threaded execution is performed,

making this much faster (10-20x) than loading a MachineLogs instance of the folder and using the .
anonymize () method.

Note: Because MachineLog instances are not overly memory-efficient, you may run into MemoryError
issues. To avoid this, try not to anonymize more than ~3000 logs at once.

Parameters

* source (str) — Points to a local log file (e.g. .dlg or .bin file) or to a directory containing
log files.

* inplace (bool)— Whether to edit the file itself, or created an anonymized copy and leave
the original.

* destination (str, None)— Where the put the anonymized logs. Must point to an
existing directory. If None, will place the logs in their original location.

* recursive (bool)— Whether to recursively enter sub-directories below the root source
folder.
class pylinac.log_analyzer.Dynalog (filename, exclude_beam_off: bool = True)
Bases: pylinac.log_analyzer.LogBase
Class for loading, analyzing, and plotting data within a Dynalog file.
header
Type DynalogHeader
axis_data
Type DynalogAxisData

fluence

138 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Type FluenceStruct

a_logfile
Path of the A* dynalog file.

b_logfile
Path of the B* dynalog file.

num_beamholds
Return the number of times the beam was held.

classmethod from_demo (exclude_beam_off: bool = True)
Load and instantiate from the demo dynalog file included with the package.

static run_demo ()
Run the Dynalog demo.

publish_pdf (filename: str, notes: str = None, metadata: dict = None, open_file: bool = False, logo:

Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) - Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘TrueBeam’} would
result in text in the PDF like: ———— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

static identify other file (first_dlg_file: str, raise_find_error: bool = True) — str
Return the filename of the corresponding dynalog file.

For example, if the A*.dlg file was passed in, return the corresponding B*.dlg filename. Can find both A-
and B-files.

Parameters

e first_dlg_file (str) - The absolute file path of the dynalog file.

e raise_find_error (bool)— Whether to raise an error if the file isn’t found.
Returns The absolute file path to the corresponding dynalog file.

Return type str

class pylinac.log_analyzer.Trajectorylog (filename: Union/str, BinarylO], ex-

clude_beam_off: bool = True)
Bases: pylinac.log_analyzer.LogBase

A class for loading and analyzing the data of a Trajectory log.
header

Type ~pylinac.log_analyzer.TrajectoryLogHeader, which has the following attributes:
axis_data

Type ~pylinac.log_analyzer.TrajectoryLogAxisData

5.10. Log Analyzer 139

pylinac Documentation, Release 3.8.2

fluence

Type ~pylinac.log_analyzer.FluenceStruct
subbeams

Type ~pylinac.log_analyzer.SubbeamManager

txt_filename
The name of the associated .txt file for the .bin file. The file may or may not be available.

classmethod from_demo (exclude_beam_off: bool = True)
Load and instantiate from the demo trajetory log file included with the package.

static run_demo ()
Run the Trajectory log demo.

to_csv (filename: Optional[str] = None) — str
Write the log to a CSV file.

Parameters filename (None, str)-If None (default), the CSV filename will be the same
as the filename of the log. If a string, the filename will be named so.

Returns The full filename of the newly created CSV file.
Return type str

publish_pdf (filename: Union[str, BinarylO], metadata: dict = None, notes: Union[str, list] = None,

open_file: bool = False, logo: Union[pathlib.Path, str; None] = None)
Publish (print) a PDF containing the analysis and quantitative results.

Parameters
e filename ((str, file—-like object })— The file to write the results to.

* notes (str, list of strings)— Text; if str, prints single line. If list of strings,
each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after creation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and value
will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘“TrueBeam’} would
result in text in the PDF like: ————— Author: James Unit: TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed, the
default pylinac logo is used.

num_beamholds
Return the number of times the beam was held.

is_hdmlc
Whether the machine has an HDMLC or not.

class pylinac.log_analyzer.Machinelogs (folder: str, recursive: bool = True)
Bases: 1ist

Read in machine logs from a directory. Inherits from list. Batch methods are also provided.
Parameters

* folder (str)—The directory of interest. Will walk through and process any logs, Trajec-
tory or dynalog, it finds. Non-log files will be skipped.

* recursive (bool)— Whether to walk through subfolders of passed directory. Only used
if folder is a valid log directory.

140 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Examples

Load a directory upon initialization:

>>> log_folder = r'C:\path\log\directory'
>>> logs = MachinelLogs (log_folder)

Batch methods include determining the average gamma and average gamma pass value:

>>> logs.avg_gamma ()

>>> 0.05 # or whatever it 1is
>>> logs.avg_gamma_pct ()

>>> 97.2

classmethod from zip (zfile: str)
Instantiate from a ZIP archive.

Parameters zfile (str)— Path to the zip archive.

num_logs
The number of logs currently loaded.

num_tlogs
The number of Trajectory logs currently loaded.

num_dlogs
The number of Trajectory logs currently loaded.

load_folder (directory: str, recursive: bool = True)
Load log files from a directory and append to existing list.

Parameters

e directory (str, None)- The directory of interest. If a string, will walk through and
process any logs, Trajectory or dynalog, it finds. Non-log files will be skipped. If None,
files must be loaded later using .load_dir() or .append().

* recursive (bool)—If True (default), will walk through subfolders of passed directory.
If False, will only search root directory.

report_basic_parameters () — None
Report basic parameters of the logs.

* Number of logs
¢ Average gamma value of all logs
* Average gamma pass percent of all logs

append (obj, recursive: bool = True) — None
Append a log. Overloads list method.

Parameters

* obj (str, Dynalog, TrajectoryLog) — If a string, must point to a log file. If
a directory, must contain log files. If a Dynalog or Trajectory log instance, then simply
appends.

* recursive (bool) — Whether to walk through subfolders of passed directory. Only
applicable if obj was a directory.

avg_gamma (doseTA: Union[int, float] = 1, distTA: Union[int, float] = 1, threshold: Union[int, float] =

0.1, resolution: Union[int, float] = 0.1) — float
Calculate and return the average gamma of all logs. See calc_map () for further parameter info.

5.10. Log Analyzer 141

pylinac Documentation, Release 3.8.2

avg_gamma_pct (doseTA: Union[int, float] = 1, distTA: Union[int, float] = 1, threshold: Union[int,
float] = 0.1, resolution: Union[int, float] = 0.1) — float
Calculate and return the average gamma pass percent of all logs. See calc_map () for further parameter
info.

to_csv () — List[str]
Write trajectory logs to CSV. If there are both dynalogs and trajectory logs, only the trajectory logs will be
written. File names will be the same as the original log file names.

Returns A list of all the filenames of the newly created CSV files.
Return type list

anonymize (inplace: bool = False, suffix: Optional[str] = None)
Save anonymized versions of the logs.

For dynalogs, this replaces the patient ID in the filename(s) and the second line of the log with ‘Anony-
mous<suffix>*. This will rename both A* and B* logs if both are present in the same directory.

For trajectory logs, the patient ID in the filename is replaced with Anonymous<suffix> for the .bin file.
If the associated .txt file is in the same directory it will similarly replace the patient ID in the filename
with Anonymous<suffix>. Additionally, the Patient ID row will be replaced with Patient ID: Anony-
mous<suffix>.

Note: Anonymization is only available for logs loaded locally (i.e. not from a URL or a data stream). To
anonymize such a log it must be first downloaded or written to a file, then loaded in.

Note: Anonymization is done to the log file itself. The current instance(s) of MachineLog will not be
anonymized.

Parameters

* inplace (bool) - If False (default), creates an anonymized copy of the log(s). If True,
renames and replaces the content of the log file.

* suffix (str, optional)- An optional suffix that is added after Anonymous to give
specificity to the log.

Returns A list containing the paths to the newly written files.
Return type list
class pylinac.log_analyzer.Graph

Bases: enum.Enum

An enumeration.

GAMMA = 'gamma'

HISTOGRAM = 'histogram'

RMS = 'rms'

class pylinac.log_analyzer.MLCBank
Bases: enum.Enum

An enumeration.

A= "'A'

142 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

B = 'R’
BOTH = 'both'

class pylinac.log_analyzer.Fluence
Bases: enum.Enum

An enumeration.

ACTUAL = 'actual'
EXPECTED = 'expected'
GAMMA = 'gamma'

class pylinac.log_analyzer.TreatmentType
Bases: enum.Enum

An enumeration.

STATIC_IMRT = 'Static IMRT'
DYNAMIC_ IMRT = 'Dynamic IMRT'
VMAT = 'VMAT'

IMAGING = 'Imaging'

Supporting Classes

You generally won’t have to interface with these unless you’re doing advanced behavior.

class pylinac.log_analyzer.Metadata (stream: BinarylO, num_axes: int)
Bases: object

Metadata field for Trajectory logs v4.0+.

Warning: The TrueBeam log file spec says that there is a reserved section of the same size as v3.0 following
this section. That is NOT TRUE. It is actually offset by the size of the metadata; meaning 1024 - (64 +
num_axes * 8) - 745.

class pylinac.log_analyzer.Axis (actual: numpy.ndarray, expected: Optional[numpy.ndarray] =

None)
Bases: object

Represents an ‘Axis’ of a Trajectory log or dynalog file, holding actual and potentially expected and difference
values.

Parameters are Attributes

Parameters
* actual (numpy.ndarray) - The array of actual position values.
* expected (numpy.ndarray, optional)— The array of expected position values.
Not applicable for dynalog axes other than MLCs.
difference
Return an array of the difference between actual and expected positions.

Returns Array the same length as actual/expected.

5.10. Log Analyzer 143

pylinac Documentation, Release 3.8.2

Return type numpy.ndarray

plot_actual () — None
Plot the actual positions as a matplotlib figure.

plot_expected () — None
Plot the expected positions as a matplotlib figure.

plot_difference () — None
Plot the difference of positions as a matplotlib figure.

class pylinac.log_analyzer .MLC (log_type, snapshot_idx: Optional[numpy.ndarray] = None,

Jjaw_struct=None, hdmlc: bool = False, subbeams=None)
Bases: object

The MLC class holds MLC information and retrieves relevant data about the MLCs and positions.
Parameters
* log _type (Dynalog, TrajectorylLog)-—

* snapshot_idx (array, 1ist)— The snapshots to be considered for RMS and error
calculations (can be all snapshots or just when beam was on).

* jaw_struct (Jaw_Struct) —

* hdmlec (boolean) — If False (default), indicates a regular MLC model (e.g. Millennium
120). If True, indicates an HD MLC model (e.g. Millennium 120 HD).

leaf_ axes
The dictionary is keyed by the leaf number, with the Axis as the value.

Warning: Leaf numbers are 1-index based to correspond with Varian convention.

Type dict containing Ax1is

classmethod from dlog (dlog, jaws, snapshot_data: numpy.ndarray, snapshot_idx: Union[list,

numpy.ndarray])
Construct an MLC structure from a Dynalog

classmethod from_ tlog (tlog, subbeams, jaws, snapshot_data, snapshot_idx, column_iter)
Construct an MLC instance from a Trajectory log.

num_pairs
Return the number of MLC pairs.

num_leaves
Return the number of MLC leaves.

num_snapshots
Return the number of snapshots used for MLC RMS & Fluence calculations.

Warning: This number may not be the same as the number of recorded snapshots in the log since the
snapshots where the beam was off may not be included. See MachinelLog.load ()

num_moving_leaves
Return the number of leaves that moved.

144

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

moving_leaves
Return an array of the leaves that moved during treatment.

add_leaf axis (leaf _axis: pylinac.log_analyzer.LeafAxis, leaf _num: int) — None
Add a leaf axis to the MLC data structure.

Parameters

e leaf axis (LeafAxis)— The leaf axis to be added.

¢ leaf num (int) - The leaf number.

Warning: Leaf numbers are 1-index based to correspond with Varian convention.

leaf_moved (leaf num: int) — bool
Return whether the given leaf moved during treatment.

Parameters leaf num (int)-

Warning: Leaf numbers are 1-index based to correspond with Varian convention.

pair_moved (pair_num: int) — bool
Return whether the given pair moved during treatment.

If either leaf moved, the pair counts as moving.

Parameters pair_ num (int) -

Warning: Pair numbers are 1-index based to correspond with Varian convention.

get_RMS_avg (bank: pylinac.log_analyzer MLCBank = <MLCBank.BOTH: "both’™>,

only_moving_leaves: bool = False)
Return the overall average RMS of given leaves.

Parameters
* bank — Specifies which bank(s) is desired.

* only moving_ leaves (boolean) - If False (default), include all the leaves. If True,
will remove the leaves that were static during treatment.

Warning: The RMS and error will nearly always be lower if all leaves are included
since non-moving leaves have an error of 0 and will drive down the average values.
Convention would include all leaves, but prudence would use only the moving leaves
to get a more accurate assessment of error/RMS.

Returns

Return type float

get_RMS_max (bank: pylinac.log_analyzer MLCBank = <MLCBank.BOTH: ’both’>) — float
Return the overall maximum RMS of given leaves.

Parameters bank — Specifies which bank(s) is desired.

Returns

5.10. Log Analyzer 145

pylinac Documentation, Release 3.8.2

Return type float

get_RMS_percentile (percentile: Union[int, float] = 95, bank: pylinac.log_analyzer MLCBank =
<MLCBank.BOTH: ’both’>, only_moving_leaves: bool = False)
Return the n-th percentile value of RMS for the given leaves.

Parameters
e percentile (int)— RMS percentile desired.
* bank — Specifies which bank(s) is desired.

* only moving_ leaves (boolean) - If False (default), include all the leaves. If True,
will remove the leaves that were static during treatment.

Warning: The RMS and error will nearly always be lower if all leaves are included
since non-moving leaves have an error of 0 and will drive down the average values.
Convention would include all leaves, but prudence would use only the moving leaves
to get a more accurate assessment of error/RMS.

get_RMS (leaves_or_bank: Union[str, pylinac.log_analyzer MLCBank, Iterable]) — numpy.ndarray
Return an array of leaf RMSs for the given leaves or MLC bank.

Parameters leaves_or bank (sequence of numbers, {'a', 'b', 'both'})
— If a sequence, must be a sequence of leaf numbers desired. If a string, it specifies which
bank (or both) is desired.

Returns An array for the given leaves containing the RMS error.
Return type numpy.ndarray

get_leaves (bank: pylinac.log_analyzer MLCBank = <MLCBank.BOTH: "both’>,

only_moving_leaves: bool = False) — list
Return a list of leaves that match the given conditions.

Parameters
e bank ({'A', 'B', 'both'})- Specifies which bank(s) is desired.

* only moving_ leaves (boolean) - If False (default), include all the leaves. If True,
will remove the leaves that were static during treatment.

get_error_percentile (percentile: Union[int, float] = 95, bank: pylinac.log_analyzer MLCBank
= <MLCBank.BOTH: ’both’>, only_moving_leaves: bool = False) —

Calculate the n-th percentii}f(:) aflztrror of the leaf error.
Parameters
e percentile (int)— RMS percentile desired.
e bank ({'A', 'B', 'both'})- Specifies which bank(s) is desired.

* only moving_leaves (boolean) - If False (default), include all the leaves. If True,
will remove the leaves that were static during treatment.

Warning: The RMS and error will nearly always be lower if all leaves are included
since non-moving leaves have an error of 0 and will drive down the average values.
Convention would include all leaves, but prudence would use only the moving leaves
to get a more accurate assessment of error/RMS.

146 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

create_error_array (leaves: Sequence[int], absolute: bool = True) — numpy.ndarray
Create and return an error array of only the leaves specified.

Parameters
¢ leaves (sequence) — Leaves desired.

¢ absolute (bool) — If True, (default) absolute error will be returned. If False, error
signs will be retained.

Returns An array of size leaves-x-num_snapshots
Return type numpy.ndarray

create_RMS_array (leaves: Sequence[int]) — numpy.ndarray
Create an RMS array of only the leaves specified.

Parameters leaves (sequence) — Leaves desired.
Returns An array of size leaves-x-num_snapshots
Return type numpy.ndarray

leaf_under_y_jaw (leaf _num: int) — bool
Return a boolean specifying if the given leaf is under one of the y jaws.

Parameters leaf num (int)-—

get_snapshot_values (bank_or_leaf: Union[pylinac.log_analyzer MLCBank, Iterable] = <ML-

CBank.BOTH: ’both’>, dtype: str = ’actual’) — numpy.ndarray
Retrieve the snapshot data of the given MLC bank or leaf/leaves

Parameters

* bank_or_leaf (str, array, list) — If a str, specifies what bank (‘A’, ‘B’,
‘both’). If an array/list, specifies what leaves (e.g. [1,2,3])

e dtype ({ 'actual', 'expected'})—-The type of MLC snapshot data to return.

Returns An array of shape (number of leaves - x - number of snapshots). E.g. for an MLC bank
and 500 snapshots, the array would be (60, 500).

Return type ndarray

plot_mlc_error_hist (show: bool = True) — None
Plot an MLC error histogram.

save_mlc_error_hist (filename: str, **kwargs) — None
Save the MLC error histogram to file.

plot_rms_by_ leaf (show: bool = True) — None
Plot RMSs by leaf.

save_rms_by_leaf (filename: str, **kwargs) — None
Save the RMS-Ieaf to file.

class pylinac.log_analyzer.DynalogHeader (dlogdata)
Bases: pylinac.core.utilities.Structure

version
The Dynalog version letter.

Type str

patient_name
Patient information.

5.10. Log Analyzer 147

pylinac Documentation, Release 3.8.2

Type str

plan_filename

Filename if using standalone. If using Treat =<6.5 will produce PlanUID, Beam Number. Not yet imple-

mented for this yet.

Type str

tolerance
Plan tolerance.

Type int

num mlc_leaves
Number of MLC leaves.

Type int

clinac_scale
Clinac scale; 0 -> Varian scale, 1 -> IEC 60601-2-1 scale

Type int

class pylinac.log_analyzer.DynalogAxisData (log, dlogdata)
Bases: object

num_snapshots
Number of snapshots recorded.

Type int

mu
Current dose fraction

Note: This can be gantry rotation under certain conditions. See Dynalog file specs.

Type Axis

previous_segment_num
Previous segment number, starting with zero.

Type Axis

beam_hold
Beam hold state; 0 -> holdoff not asserted (beam on), 1 -> holdoff asserted, 2 -> carriage in transition

Type Axis

beam_on
Beam on state; 1 -> beam is on, 0 -> beam is off

Type Axis

prior_dose_index
Previous segment dose index or previous segment gantry angle.

Type Axis

next_dose_index
Next segment dose index.

Type Axis

148 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

gantry
Gantry data in degrees.

Type Axis

collimator
Collimator data in degrees.

Type Axis

jaws
Jaw data structure. Data in cm.

Type Jaw_Struct

carriage_ A
Carriage A data. Data in cm.

Type Axis

carriage_B
Carriage B data. Data in cm.

Type Axis

mlc
MLC data structure. Data in cm.

Type MLC
Read the dynalog axis data.

class pylinac.log_analyzer.TrajectoryLogHeader (file: BinarylO)
Bases: object

header [str] Header signature: “VOSTL'.

version [str] Log version.

header_size [int] Header size; fixed at 1024.

sampling_interval [int] Sampling interval in milliseconds.

num_axes [int] Number of axes sampled.

axis_enum [int] Axis enumeration; see the Tlog file specification for more info.

samples_per_axis [numpy.ndarray] Number of samples per axis; 1 for most axes, for MLC it’s # of leaves and
carriages.

num_mlc_leaves [int] Number of MLC leaves.

axis_scale [int] Axis scale; 1 -> Machine scale, 2 -> Modified IEC 61217.

num_subbeams [int] Number of subbeams, if autosequenced.

is_truncated [int] Whether log was truncated due to space limitations; 0 -> not truncated, 1 -> truncated
num_snapshots [int] Number of snapshots, cycles, heartbeats, or whatever you’d prefer to call them.

mlc_model [int] The MLC model; 2 -> NDS 120 (e.g. Millennium), 3 -> NDS 120 HD (e.g. Millennium 120
HD)

class pylinac.log_analyzer.TrajectorylLogAxisData (log, file, subbeams)
Bases: object

collimator [Axis] Collimator data in degrees.

5.10. Log Analyzer 149

pylinac Documentation, Release 3.8.2

gantry [Axis] Gantry data in degrees.

jaws [Jaw_Struct] Jaw data structure. Data in cm.

couch [Couch_Struct] Couch data structure. Data in cm.
mu [Axis] MU data in MU.

beam_hold [Axis] Beam hold state. Beam pauses (e.g. Beam Off button pressed) are not recorded in the log.
Data is automatic hold state. 0 -> Normal; beam on. 1 -> Freeze; beam on, dose servo is temporarily
turned off. 2 -> Hold; servo holding beam. 3 -> Disabled; beam on, dose servo is disable via Service.

control_point [Axis] Current control point.
carriage_A [Axis] Carriage A data in cm.
carriage_B [Axis] Carriage B data in cm.
mlc [MLC] MLC data structure; data in cm.

class pylinac.log_analyzer.SubbeamManager (file, header)
Bases: object

One of 4 subsections of a trajectory log. Holds a list of Subbeams; only applicable for auto-sequenced beams.

post_hoc_metadata (axis_data)
From the Axis Data, perform post-hoc analysis and set metadata to the subbeams. Gives the subbeams
more information, as not much is given directly in the logs.

class pylinac.log_analyzer.Subbeanm (file, log_version: float)
Bases: object

Data structure for trajectory log “subbeams”. Only applicable for auto-sequenced beams.

control_point
Internally-defined marker that defines where the plan is currently executing.

Type int

mu_delivered
Dose delivered in units of MU.

Type float

rad_time
Radiation time in seconds.

Type float

sequence_num
Sequence number of the subbeam.

Type int

beam_name
Name of the subbeam.

Type str

gantry_ angle
Median gantry angle of the subbeam.

collimator_angle
Median collimator angle of the subbeam.

jaw_x1
Median X1 position of the subbeam.

150 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

jaw_x2
Median X2 position of the subbeam.

jaw_yl
Median Y1 position of the subbeam.
jaw_y2
Median Y2 position of the subbeam.
class pylinac.log_analyzer.FluenceStruct (mlc_struct=None, mu_axis:
pylinac.log_analyzer.Axis = None,

jaw_struct=None)
Bases: object

Structure for data and methods having to do with fluences.

actual
The actual fluence delivered.

Type FluenceBase

expected
The expected, or planned, fluence.

Type FluenceBase

gamma
The gamma structure regarding the actual and expected fluences.

Type GammaFluence

class pylinac.log_analyzer.FluenceBase (mlc_struct=None, mu_axis.
pylinac.log_analyzer.Axis None,
Jjaw_struct=None)

Bases: object
An abstract base class to be used for the actual and expected fluences.

array
An array representing the fluence map; will be num_mlc_pairs-x-400/resolution. E.g., assuming a Millen-
nium 120 MLC model and a fluence resolution of 0.1mm, the resulting matrix will be 60-x-4000.

Type numpy.ndarray

resolution
The resolution of the fluence calculation; -1 means calculation has not been done yet.

Type int, float

Parameters
e mlc_struct (MLC_Struct) -
* mu_axis (BeamAxis)—
* jaw_struct (Jaw_Struct) —
is_map_calced (raise_error: bool = False) — bool
Return a boolean specifying whether the fluence has been calculated.

calc_map (resolution: float = 0.1, equal_aspect: bool = False) — numpy.ndarray
Calculate a fluence pixel map.

Image calculation is done by adding fluence snapshot by snapshot, and leaf pair by leaf pair. Each leaf pair
is analyzed separately. First, to optimize, it checks if the leaf is under the y-jaw. If so, the fluence is left

5.10. Log Analyzer 151

pylinac Documentation, Release 3.8.2

at zero; if not, the leaf (or jaw) ends are determined and the MU fraction of that snapshot is added to the
total fluence. All snapshots are iterated over for each leaf pair until the total fluence matrix is built.

Parameters

e resolution (int, float) - The resolution in mm of the fluence calculation in the
leaf-moving direction.

* equal_aspect (bool) — If True, make the y-direction the same resolution as x. If
False, the y-axis will be equal to the number of leaves.

returns A numpy array reconstructing the actual fluence of the log. The size will be
the number of MLC pairs by 400 / resolution since the MLCs can move anywhere
within the 40cm-wide linac head opening.

rtype numpy.ndarray

plot_map (show: bool = True) — None
Plot the fluence; the fluence (pixel map) must have been calculated first.

save_map (filename: str, **kwargs) — None
Save the fluence map figure to a file.

class pylinac.log_analyzer.ActualFluence (mlc_struct=None, mu_axis:
pylinac.log_analyzer.Axis = None,
Jjaw_struct=None)
Bases: pylinac.log_analyzer.FluenceBase

The actual fluence object
Parameters
* mlc_struct (MLC_Struct) -
* mu_axis (BeamAxis)-—
* jaw_struct (Jaw_Struct) —

class pylinac.log_analyzer.ExpectedFluence (mlc_struct=None, mu_axis.
pylinac.log_analyzer.Axis = None,

jaw_struct=None)
Bases: pylinac.log _analyzer.FluenceBase

The expected fluence object.
Parameters
e mlc_struct (MLC_Struct)-—
* mu_axis (BeamAxis)—
* jaw_struct (Jaw_Struct)—

class pylinac.log_analyzer.GammaFluence (actual_fluence: pylinac.log_analyzer.ActualFluence,
expected_fluence: pylinac.log_analyzer. ExpectedFluence,

mlc_struct)
Bases: pylinac.log_analyzer.FluenceBase

Gamma object, including pixel maps of gamma, binary pass/fail pixel map, and others.

array
The gamma map. Only available after calling calc_map()

Type numpy.ndarray

passfail_array
The gamma pass/fail map; pixels that pass (<1.0) are set to 0, while failing pixels (>=1.0) are set to 1.

152 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Type numpy.ndarray

distTA
The distance to agreement value used in gamma calculation.

Type int, float

doseTA
The dose to agreement value used in gamma calculation.

Type int, float

threshold
The threshold percent dose value, below which gamma was not evaluated.

Type int, float

pass_prent
The percent of pixels passing gamma (<1.0).

Type float

avg_gamma
The average gamma value.

Type float

Parameters
* actual_fluence (ActualFluence) - The actual fluence object.
* expected_fluence (ExpectedFluence)— The expected fluence object.
e mlc_struct (MLC_Struct)- The MLC structure, so fluence can be calculated from

leaf positions.

calc_map (doseTA: Unionf[int, float] = 1, distTA: Union[int, float] = 1, threshold: Union[int, float]
= 0.1, resolution: Union[int, float] = 0.1, calc_individual_maps: bool = False) —

numpy.ndarray
Calculate the gamma from the actual and expected fluences.

The gamma calculation is based on Bakai et al eq.6, which is a quicker alternative to the standard Low
gamma equation.

Parameters
* doseTA (int, float)- Dose-to-agreement in percent;e.g. 2 is 2%.
* distTA (int, float)- Distance-to-agreement in mm.

* threshold (int, float) — The dose threshold percentage of the maximum
dose, below which is not analyzed.

* resolution (int, float)- The resolution in mm of the resulting gamma map
in the leaf-movement direction.

* calc_individual_maps (bool)— Not yet implemented. If True, separate pixel
maps for the distance-to-agreement and dose-to-agreement are created.

Returns A num_mlc_leaves-x-400/resolution numpy array.
Return type numpy.ndarray

plot_map (show: bool = True)
Plot the fluence; the fluence (pixel map) must have been calculated first.

5.10. Log Analyzer 153

http://iopscience.iop.org/0031-9155/48/21/006/

pylinac Documentation, Release 3.8.2

histogram (bins: Optional[list] = None) — Tuple[numpy.ndarray, numpy.ndarray]
Return a histogram array and bin edge array of the gamma map values.

Parameters bins (sequence) — The bin edges for the gamma histogram; see
numpy.histogram for more info.

Returns
* histogram (numpy.ndarray) — A 1D histogram of the gamma values.

* bin_edges (numpy.ndarray) — A 1D array of the bin edges. If left as None, the class
default will be used (self.bins).

plot_histogram (scale: str = ’log’, bins: Optional[list] = None, show: bool = True) — None
Plot a histogram of the gamma map values.

Parameters
* scale({'log', 'linear'})— Scale of the plot y-axis.

* bins (sequence) — The bin edges for the gamma histogram; see numpy.histogram
for more info.

save_histogram (filename: str, scale: str = ’log’, bins: Optional[list] = None, **kwargs) — None
Save the histogram plot to file.

plot_passfail _map () — None
Plot the binary gamma map, only showing whether pixels passed or failed.

class pylinac.log_analyzer.JawStruct (x/: pylinac.log_analyzer. HeadAxis,
yi: pylinac.log_analyzer. HeadAxis,
x2: pylinac.log_analyzer.HeadAxis, y2:

pylinac.log_analyzer.HeadAxis)
Bases: object

Jaw Axes data structure.

x1
Type Axis
yl
Type Axis
x2
Type Axis
y2
Type Axis
class pylinac.log_analyzer.CouchStruct (vertical: pylinac.log_analyzer.CouchAxis, lon-
gitudinal: pylinac.log_analyzer. CouchAxis,
lateral: pylinac.log_analyzer. CouchAxis, rota-

tional: pylinac.log_analyzer.CouchAxis, pitch:
Optional[pylinac.log_analyzer.CouchAxis] = None,
roll: Optional[pylinac.log_analyzer.CouchAxis] =

None)
Bases: object

Couch Axes data structure.

vert

154 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Type Axis
long

Type Axis
latl

Type Axis
rotn

Type Axis

class pylinac.log_analyzer.NotALogError
Bases: OSError

Machine log error. Indicates that the passed file is not a valid machine log file.

class pylinac.log_analyzer.NotADynalogError
Bases: OSError

Dynalog error. Indicates that the passed file is not a valid dynalog file.

class pylinac.log_analyzer.DynalogMatchError
Bases: OSError

Dynalog error. Indicates that the associated file of the dynalog passed in (A file if B passed in & vic versa)
cannot be found. Ensure associated file is in the same folder and has the same name as the passed file, except
the first letter.

5.11 Picket Fence

5.11.1 Overview

The picket fence module is meant for analyzing EPID images where a “picket fence” MLC pattern has been made.
Physicists regularly check MLC positioning through this test. This test can be done using film and one can “eyeball”
it, but this is the 21st century and we have numerous ways of quantifying such data. This module attains to be one of
them. It can load in an EPID dicom image (or superimpose multiple images) and determine the MLC peaks, error of
each MLC pair to the picket, and give a few visual indicators for passing/warning/failing.

Features:
¢ Analyze any MLC type - Both default MLCs and custom MLCs can be used.

» Easy-to-read pass/warn/fail overlay - Analysis gives you easy-to-read tools for determining the status of an
MLC pair.

¢ Any Source-to-Image distance - Whatever your clinic uses as the SID for picket fence, pylinac can account for
it.

* Account for panel translation - Have an off-CAX setup? No problem. Translate your EPID and pylinac knows.

* Account for panel sag - If your EPID sags at certain angles, just tell pylinac and the results will be shifted.

5.11.2 Concepts

Although most terminology will be familiar to a clinical physicist, it is still helpful to be clear about what means what.
A “picket” is the line formed by several MLC pairs all at the same position. There is usually some ideal gap between
the MLCs, such as 0.5, 1, or 2 mm. An “MLC position” is, for pylinac’s purposes, the center of the FWHM of the

5.11. Picket Fence 155

pylinac Documentation, Release 3.8.2

peak formed by one MLC pair at one picket. Thus, one picket fence image may have anywhere between a few to a
dozen pickets, formed by as few as 10 MLC pairs up to all 60 pairs.

Pylinac presents the analyzed image in such a way that allows for quick assessment; additionally, all elements atop
the image can optionally be turned off. Pylinac by default will plot the image, the determined MLC positions, “guard
rails”, and a semi-transparent overlay of the MLC error magnitude and translucent boxes over failed leaves. The guard
rails are two lines parallel to the fitted picket or side of the picket, offset by the tolerance passed to analyze ().
Thus, if a tolerance of 0.5 mm is passed, each guard rail is 0.5 mm to the left and right of the invisible picket. Ideally,
MLC positions will all be within these guard rails, i.e. within tolerance, and will be colored blue. If they are outside
the tolerance they are turned red with a larger box overlaid for easy identification. If an “action tolerance” is also
passed to analyze (), MLC positions that are below tolerance but above the action tolerance are turned magenta.

Additionally, pylinac provides a semi-transparent colored overlay so that an “all clear” or a “pair(s) failed” status is
easily seen and not inadvertently overlooked. If any MLC position is outside the action tolerance or the absolute
tolerance, the MLC pair/leaf area is colored the corresponding color. In this way, not every position needs be looked
at.

5.11.3 Running the Demo

To run the picketfence demo, create a script or start in interpreter and input:

from pylinac import PicketFence

PicketFence.run_demo ()

Results will be printed to the console and a figure showing the analyzed picket fence image will pop up:

Picket Fence Results:

100.0% Passed

Median Error: 0.062mm

Max Error: 0.208mm on Picket: 3, Leaf: 22

Finally, you can save the results to a PDF report:

pf = PicketFence.from_demo ()
pf.analyze ()
pf.publish_pdf (filename="'PF Oct-2018.pdf")

5.11.4 Acquiring the Image

The easiest way to acquire a picket fence image is using the EPID. In fact, pylinac will only analyze images acquired
via an EPID, as the DICOM image it produces carries important information about the SID, pixel/mm conversion, etc.
Depending on the EPID type and physicist, either the entire array of MLCs can be imaged at once, or only the middle
leaves are acquired. Changing the SID can also change how many leaves are imaged. For analysis by pylinac, the SID
does not matter, nor EPID type, nor panel translation.

5.11.5 Typical Use

Picket Fence tests are recommended to be done weekly. With automatic software analysis, this can be a trivial task.
Once the test is delivered to the EPID, retrieve the DICOM image and save it to a known location. Then import the
class:

156 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Average Error (mm)

1000

800

600

ppl,punnphﬁ|”rlqn|ln|

200

0.0 0.2 0.4 0.6

from pylinac import PicketFence

The minimum needed to get going is to:

Load the image — As with most other pylinac modules, loading images can be done by passing the image string
directly, or by using a UI dialog box to retrieve the image manually. The code might look like either of the
following:

pf_img = r"C:/QA Folder/June/PF_6_21.dcm"
pf = PicketFence (pf_img)

You may also load multiple images that become superimposed (e.g. an MLC & Jaw irradiation):

imgl = r'path/to/imagel.dcm’'
img2 = r'path/to/image2.dcm’
pf = PicketFence.from_multiple_images ([imgl, img2])

As well, you can use the demo image provided:

pf = PicketFence.from_demo_image ()

You can also change the MLC type:

pf = PicketFence (pf_img, mlc="HD")

In this case, we’ve set the MLCs to be HD Millennium. For more options and to customize the MLC configura-
tion, see Customizing MLCs.

5.11.

Picket Fence 157

pylinac Documentation, Release 3.8.2

* Analyze the image — Once the image is loaded, tell PicketFence to start analyzing the image. See the Algorithm
section for details on how this is done. While defaults exist, you may pass in a tolerance as well as an “action”
tolerance (meaning that while passing, action should be required above this tolerance):

pf.analyze (tolerance=0.15, action_tolerance=0.03) # tight tolerance to demo fail_,
—~& warning overlay

* View the results — The PicketFence class can print out the summary of results to the console as well as draw a
matplotlib image to show the image, MLC peaks, guard rails, and a color overlay for quick assessment:

print results to the console
print (pf.results())

view analyzed image
pf.plot_analyzed_image ()

which results in:

Average Error (mm)

1000

800

"h

600

400

200

0.0 0.1 0.2

The plot is also able to be saved to PNG:

pf.save_analyzed_image ('mypf.png')

Or you may save to PDF:

pf.publish_pdf ('mypf.pdf")

158 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.11.6 Analyzing individual leaves

Historically, MLC pairs were evaluated together; i.e. the center of the picket was determined and compared to the
idealized picket. In v3.0+, an option to analyze each leaf of the MLC kiss was added. This will create 2 pickets per
gap, one on either side and compare the measurements of each leaf. For backwards compatibility, this option is opt-in.
This option also requires a nominal gap value to be passed. To analyze individual leaves:

from pylinac import PicketFence
pf = PicketFence(...)
pf.analyze (..., separate_leaves=True, nominal_gap_mm=2)

Note: Don’t forget that you will always need to pass a correct nominal_gap_mm value when analyzing separated
leaves. A good starting point is the nominal gap (e.g. 2mm in the DICOM plan) + DLG.

The gap value is the combined values of the planned gap, MLC DLG, and EPID scatter effects. This is required since
the expected position is no longer at the center of the MLC kiss, but offset to the side and depends on the above effects.
You will likely have to determine this for yourself given the different MLCs and EPID combinations make a dynamic
computation difficult.

5.11.7 Individual leaf detection vs combined

Despite the above, I personally (JK) don’t like the individual leaf analysis approach. I have found the combined
method more robust (in terms of analysis). The biggest problem with individual leaf analysis is that the expected leaf
width is not just simply the DICOM separation and must be empirically determined. I will describe some of the issues
the PF test is meant to or can solve w/r/t individual analysis vs combined.

* One leaf error: When one single leaf has an error. This is the quintessential example for PF.

Average Error (mm)

Fig. 1: Combined analysis

5.11. Picket Fence 159

pylinac Documentation, Release 3.8.2

Average Error (mm)

700 +

680 4

660

640

620 4
0.0 0.5 10

Fig. 2: Separate analysis

160 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Assuming the opposite leaf has no error (see other issues below), the error of a combined analysis is half of the
error of the leaf. Over against the argument that it is important to test each leaf, the simple answer is that using
a tolerance of half the acceptable error will catch this. L.e. a tolerance of 0.1mm will catch an erroneous leaf up
of 0.2mm or more.

¢ Both leaves offset (unilateral): When both leaves are offset to one side.

Average Error (mm)

205+

200 +

195 4

190 4

185 17—

180 1

T T
0.0 0.2 0.4 0.6

Fig. 3: Combined analysis

As the images show, both analyses detect the problem. This makes sense given that the error was the same
direction for both leaves.

¢ Both leaves offset (mirrored): When both leaves have an offset error, but in opposite directions. This is the
only drawback to the combined method.

Clearly, the separate analysis is advantageous here in terms of detecting the error. The chance of MLC leaves
being off by the same amount in opposite directions seems extraordinarily rare. The more likely error would
be that the picket width for all leaves is too wide or too narrow. Such a scenario would be easily caught with a
DLG test.

To be clear, I'm not against individual leaf analysis, but my anecdotal experience leans toward combined analysis
being more robust. Combined with other QA typically performed, I don’t think the medical physics community
is all out of whack because they use the combined method vs individual analysis. Use what works for you
but realize the strengths of each. Finally, remember that physician contours vary a lot, sometimes by a factor or
more. This dwarfs any 0.1mm error of the leaf that we might squabble about. For the scenarios you actually need
that 0.1mm, such as SRS, the patient plan QA is the most important factor in determining whether a problem
exists.

5.11. Picket Fence 161

pylinac Documentation, Release 3.8.2

Average Error (mm)

Fig. 4: Separate analysis with the same tolerance

162 Chapter 5. Contributing

Average Error (mm)

700 1

680

660

640 4

620 +

600

580 4
0.0 0.2 0.4 0.6

Fig. 5: Combined analysis

pylinac Documentation, Release 3.8.2

Average Error (mm)

Fig. 6: Separate analysis

5.11.8 Plotting a histogram

As of v3.0, you may plot a histogram of the error data like so:

from pylinac import PicketFence
pf = PicketFence.from_demo_image ()
pf.analyze ()

pf.plot_histogram()

5.11.9 Plotting a leaf profile

As of v3.0, you may plot an individual leaf profile like so:

from pylinac import PicketFence

pf = PicketFence.from_demo_image ()
pf.analyze ()

pf.plot_leaf profile(leaf=15, picket=2)

5.11.10 Using a Machine Log

As of v1.4, you can load a machine log along with your picket fence image. The algorithm will use the expected
fluence of the log to determine where the pickets should be instead of fitting to the MLC peaks. Usage looks like this:

from pylinac import PicketFence

pf = PicketFence ('my/pf.dcm', log='my/pf_ log.bin')

5.11. Picket Fence 163

pylinac Documentation, Release 3.8.2

Leaf error histogram

80 A

60

Counts

40 A

20 A

—-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075
Error (mm)

164 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

MLC profile Leaf: 15, Picket: 2

—— Fitted picket location
—— Measured MLC position /\
0.7 4 —— Guard rail
—— Guard rail
0.6
0.5 A
0.4 4
0.3 4

480 490 500 510 520

5.11. Picket Fence 165

pylinac Documentation, Release 3.8.2

Everything else is the same except the measurements are absolute.

Warning: While using a machine log makes the MLC peak error absolute, there may be EPID twist or sag that
will exaggerate differences that may or may not be real. Be sure to understand how your imager moves during
your picket fence delivery. Even TrueBeams are not immune to EPID twist.

Results will look similar. Here’s an example of the results of using a log:

Average Error (mm)
T T T

2500

2000

1500

1000

500

ol i i o i
0.00.10.20.30.4 0.5 0.6

5.11.11 Customizing MLCs

As of v2.5, MLC configuration is set a priori (vs empirical determination as before) and the user can also create custom
MLC types. Pylinac was only able to handle Millennium and HD Millennium previously.

Preset configurations

Use a specific preset config:

from pylinac.picketfence import PicketFence, MLC

pf = PicketFence (pf_img, mlc=MLC.MILLENNIUM)

The built-in presets can be seen in attrs of the MLC class.

166 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Creating and using a custom configuration

Using a custom configuration is very easy. You must create and then pass in a custom MLCArrangement. Leaf
arrangements are sets of tuples with the leaf number and leaf width. An example will make this clear:

from pylinac.picketfence import PicketFence, MLCArrangement

recreate a standard Millennium MLC with 10 leaves of 10mm width, then 40 leaves of_
—5mm, then 10 of 10mm again.

mlc_setup = MLCArrangement (leaf_arrangement=[(10, 10), (40, 5), (10, 10)1)

add an offset for Halcyon-style or odd-numbered leaf setups

mlc_setup_offset = MLCArrangement (leaf_arrangement=..., offset=2.5) # offset is in mm

pass it in to the mlc parameter
pf = PicketFence('path/to/img', mlc=mlc_setup)

proceed as normal
pf.analyze(...)

5.11.12 Acquiring good images

The following are general tips on getting good images that pylinac will analyze easily. These are in addition to the
algorithm allowances and restrictions:

* Keep your pickets away from the edges. That is, in the direction parallel to leaf motion keep the pickets at least
1-2cm from the edge.

* If you use wide-gap pickets, give a reasonable amount of space between the pickets and keep the gap wider than
the picket. I.e. don’t have Smm spacing between 20mm pickets.

* If you use Y-jaws, leave them open 1-2 leaves more than the leaves you want to measure. For example. if you
just want to analyze the “central” leaves and set Y-jaws to +/-10cm, the leaves at the edge may not be caught
by the algorithm (although see the edge_threshold parameter of analyze). To avoid having to tweak the
algorithm, just open the jaws a bit more.

e Don’t put anything else in the beam path. This might sound obvious, but I'm continually surprised at the types
of images people try to use/take. No, pylinac cannot account for the MV phantom you left on the couch when
you took your PF image.

* Keep the leaves parallel to an edge. IL.e. as close to 0, 90, 270 as possible.

5.11.13 Tips & Tricks
Use results_data
Using the picketfence module in your own scripts? While the analysis results can be printed out, if you intend on using

them elsewhere (e.g. in an API), they can be accessed the easiest by using the analyze () method which returns a
PFResult instance.

Note: While the pylinac tooling may change under the hood, this object should remain largely the same and/or
expand. Thus, using this is more stable than accessing attrs directly.

Continuing from above:

5.11. Picket Fence 167

pylinac Documentation, Release 3.8.2

data = pf.results_data()
data.max_error_mm
data.tolerance_mm

and more

return as a dict
data_dict = pf.results_data(as_dict=True)
data_dict['max_error_mm']

EPID sag

For older linacs, the EPID can also sag at certain angles. Because pylinac assumes a perfect panel, sometimes the
analysis will not be centered exactly on the MLC leaves. If you want to correct for this, simply pass the EPID sag in
mm:

pf = PicketFence(r'C:/path/saggyPF.dcm')
pf.analyze (sag_adjustment=0.6)

Edge leaves

For some images, the leaves at the edge of the image or adjacent to the jaws may not be detected. See the image below:

Average Error (mm)

150 1~

125 A

100 1 —
751
50

257

0.0 0.2 0.4 0.6

This is caused by the algorithm filtering and can be changed through an analysis parameter. Increase the number to
catch more edge leaves:

pf = PicketFence(...)
pf.analyze (..., edge_threshold=3)

This results with the edge leaves now being caught in this case. You may need to experiment with this number a few
times:

168 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Average Error (mm)
100 {—

80

60 4

40 4—

20 e

0.0 0.2 0.4 0.6

5.11.14 Benchmarking the algorithm

With the image generator module we can create test images to test the picket fence algorithm on known results. This
is useful to isolate what is or isn’t working if the algorithm doesn’t work on a given image and when commissioning
pylinac.

Note: Some results here are not perfect. This is because the image generator module cannot necessarily generate
pickets of exactly a given gap. The pickets are simulated by setting the pixel values. A gap is rounded to the closest
pixel equivalent of the desired gap size; this may not be perfectly symmetric. This affects the error when doing separate
leaf analysis and also when evaluating the distance from the CAX. Further, many of these have small amounts of
random noise applied on purpose.

Perfect Up-Down Image

Below, we generate a DICOM image with slits representing pickets. Several realistic side-effects are not here (such as
tongue and groove), but this is perfect for testing. Think of this as the equivalent of measuring a 10x10cm field on the
linac vs TPS dose before moving on to VMAT plans.

The script will generate the file, but you can also download it here: perfect_up_down.dcm.

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterLayer,
—PerfectFieldLayer, RandomNoiselLayer, AS1200Image

from pylinac.picketfence import Orientation

the file name to write the DICOM image to disk to
pf_file = "perfect_.dcm"
create a PF image with 5 pickets with 40mm spacing between them and 3mm gap. Also_,
—applies a gaussian filter to simulate the leaf edges.
generate_picketfence (

simulator=AS1200Image (sid=1000),

field_layer=PerfectFieldLayer,

file_out=pf_file,

final_layers=]|

GaussianFilterLayer (sigma_mm=1),

]I

pickets=5,

picket_spacing_mm=40,

picket_width_mm=3,

(continues on next page)

5.11. Picket Fence 169

pylinac Documentation, Release 3.8.2

(continued from previous page)

orientation=Orientation.UP_DOWN,
)
load it just like any other
pf = pylinac.PicketFence (pf_file)
pf.analyze (separate_leaves=False, nominal_gap_mm=4)
print (pf.results_data())
pf.plot_analyzed_image ()

Average Error (mm)

1200

1000

800

600

400

200

0.0 0.2 0.4 0.6

As you can see, the error is zero, the pickets are perfectly straight up and down, and everything looks good.

Perfect Left-Right

Generated file: perfect_left_right.dcm.

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterLayer,
—PerfectFieldLayer, RandomNoiselLayer, AS1200Image

from pylinac.picketfence import Orientation

pf_file = "perfect_left_right.dcm"
generate_picketfence (
simulator=AS1200Image (sid=1000),
field_layer=PerfectFieldLayer,
file_out=pf_file,
final layers=][

(continues on next page)

170 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

GaussianFilterLayer (sigma_mm=1),
1,
pickets=5,
picket_spacing_mm=40,
picket_width_mm=3,
orientation=Orientation.LEFT_RIGHT,

pf = pylinac.PicketFence (pf_file)

pf.analyze (separate_leaves=False, nominal_gap_mm=4)
print (pf.results_datal())

pf.plot_analyzed_image ()

Average Error (mm)

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0 200 400 600 800 1000 1200

5.11. Picket Fence

171

pylinac Documentation, Release 3.8.2

Noisy, Wide-gap Image

Generated file: noisy_wide_gap_up_down.dcm.

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterlayer,
—PerfectFieldLayer, RandomNoiselLayer, AS1200Image

from pylinac.picketfence import Orientation

pf_file = "noisy_wide_gap_up_down.dcm"
generate_picketfence (
simulator=AS1200Image (sid=1500),
field layer=PerfectFieldlLayer, # this applies a non-uniform intensity about the_
—CAX, simulating the horn effect
file_out=pf_file,
final_layers=[
GaussianFilterLayer (sigma_mm=1),
RandomNoiselLayer (sigma=0.03) # add salt & pepper noise
]I
pickets=10,
picket_spacing_mm=20,
picket_width_mm=10, # wide-ish gap
orientation=Orientation.UP_DOWN,

pf = pylinac.PicketFence (pf_file)
pf.analyze ()

print (pf.results_data())
pf.plot_analyzed_image ()

Average Error (mm)

1200

1000

800 1

600 £

400 £

200 +

0.0 0.2 0.4 0.6

172 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Individual Leaf Analysis

Let’s now analyze individual leaves using the separate_leaves parameter. This uses the same image base as
above; note that the analysis is different.

Generated file: separated_wide_gap_up_down.dcm.

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterlayer,
—PerfectFieldLayer, RandomNoiseLayer, AS1200Image

from pylinac.picketfence import Orientation

pf_file = "separated_wide_gap_up_down.dcm"
generate_picketfence (
simulator=AS1200Image (sid=1500),
field_layer=PerfectFieldLayer, # this applies a non-uniform intensity about the_,
—~CAX, simulating the horn effect
file_out=pf_file,
final_layers=]|
GaussianFilterLayer (sigma_mm=1),
RandomNoiseLayer (sigma=0.03) # add salt & pepper noise
]I
pickets=10,
picket_spacing_mm=20,
picket_width_mm=10, # wide—ish gap
orientation=Orientation.UP_DOWN,

pf = pylinac.PicketFence (pf_file)

pf.analyze (separate_leaves=True, nominal_gap_mm=10)
print (pf.results())

print (pf.results_datal())

pf.plot_analyzed_image ()

Note that this image has an error of ~0.lmm. This is due to the rounding of pixel values when generating the picket.
L.e. it’s not always possible to generate an exactly 10mm gap, but instead is rounded to the nearest pixel equivalent of
10mm.

Rotated

Let’s analyze a slightly rotated image of 2 degrees. Recall that pylinac is limited to ~5 degrees of rotation (depending
on picket size).

The image generator doesn’t do the rotation, but is applied later after loading.

Generated file: rotated_up_down.dcmn.

from scipy import ndimage

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterlayer,
—PerfectFieldLayer, RandomNoiselLayer, AS1200Image

from pylinac.picketfence import Orientation

pf_file = "rotated_up_down.dcm"
generate_picketfence (
simulator=AS1200Image (sid=1500),

(continues on next page)

5.11. Picket Fence 173

pylinac Documentation, Release 3.8.2

Average Error (mm)

1200

1000

800

600

400

200

0.0 0.2 0.4 0.6

(continued from previous page)

field_layer=PerfectFieldLayer, # this applies a non-uniform intensity about the_
—CAX, simulating the horn effect
file_out=pf_file,
final_ layers=|[
GaussianFilterLayer (sigma_mm=1),
RandomNoiseLayer (sigma=0.01) # add salt & pepper noise
]I
pickets=10,
picket_spacing_mm=20,
picket_width_mm=5,
orientation=Orientation.UP_DOWN,

pf = pylinac.PicketFence (pf_file)

here's where we rotate

pf.image.array = ndimage.rotate (pf.image, -2, reshape=False, mode='nearest')
pf.analyze (separate_leaves=False, nominal_gap_mm=5)

print (pf.results())

print (pf.results_datal())

pf.plot_analyzed_image ()

Offset pickets

In this example, we offset the pickets to simulate an error where the picket was delivered at the wrong x-distance. Lots
of physicists cite this as a possibility (or expect their QA software to catch it) but I’ve never seen it. If you have let me

174 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Average Error (mm)

1200

1000

800

600

400

200

0.0 0.2 0.4 0.6

know!

Generated file: of fset_picket.dcm.

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterLayer,
—PerfectFieldLayer, RandomNoiselLayer, AS1200Image

from pylinac.picketfence import Orientation

pf_file = "offsetpicket.dcm"
generate_picketfence (
simulator=AS1200Image (sid=1500),
field layer=PerfectFieldLayer, # this applies a non-uniform intensity about the_,
—CAX, simulating the horn effect
file_out=pf_file,
final_ layers=|[
GaussianFilterLayer (sigma_mm=1),
RandomNoiseLayer (sigma=0.01) # add salt & pepper noise
1,
pickets=5,
picket_spacing _mm=20,
picket_width_mm=5,
picket_offset_error=[-5, 0, 0, 2, 0], # array of errors; length must match the_
—number of pickets
orientation=Orientation.UP_DOWN,

pf = pylinac.PicketFence (pf_file)

(continues on next page)

5.11. Picket Fence 175

pylinac Documentation, Release 3.8.2

(continued from previous page)

pf.analyze ()

print (pf.results())
print (pf.results_data())
pf.plot_analyzed_image ()

Average Error (mm)

1200

1000

800

600

400

200

0.0 0.2 0.4 0.6

Which produces the following output:

Picket offsets from CAX (mm): 45.0 19.9 0.0 -22.0 —-40.1

The results still show passing. However, note the printed picket offsets from the CAX. The first picket is off by Smm
and the 4th is off by 2mm (as we introduced).

Erroneous leaves

In this example we introduce errors simulating leaves opening farther than they should.

Generated file: erroneous_leaves.dcm.

import pylinac

from pylinac.core.image generator import generate_picketfence, GaussianFilterLayer,
—PerfectFieldLayer, RandomNoiseLayer, AS1200Image

from pylinac.picketfence import Orientation

pf_file = "erroneous_leaves.dcm"

(continues on next page)

176 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

generate_picketfence (
simulator=AS1200Image (sid=1000),
field_layer=PerfectFieldLayer, # this applies a non-uniform intensity about,,
—the CAX, simulating the horn effect
file_out=pf_file,
final layers=|[
PerfectFieldLayer (field_size_mm=(5, 10), cax_offset_mm=(2.5, 90)), # a,,
—10mm gap centered over the picket
PerfectFieldLayer (field_size_mm=(5, 5), cax_offset_mm=(12.5, -87.5)), #_
—a 2.5mm extra opening of one leaf
PerfectFieldLayer (field_size_mm=(5, 5), cax_offset_mm=(22.5, -49)), # a_
—Imm extra opening of one leaf
GaussianFilterLayer (sigma_mm=1),
RandomNoiseLayer (sigma=0.03) # add salt & pepper noise
]I
pickets=10,
picket_spacing_mm=20,
picket_width_mm=5, # wide-ish gap
orientation=Orientation.UP_DOWN,

pf = pylinac.PicketFence (pf_file)

pf.analyze (separate_leaves=True, nominal_gap_mm=5)
print (pf.results())

print (pf.results_datal())

pf.plot_analyzed_image ()

Average Error (mm)

1200

1000

]
o
o

600

_

0

o

0.5 1.0

5.11. Picket Fence 177

pylinac Documentation, Release 3.8.2

5.11.15 Algorithm
The picket fence algorithm uses expected lateral positions of the MLCs and samples those regions for the center of the
FWHM to determine the MLC positions:
Allowances
* The image can be any size.
* Various leaf sizes can be analyzed (e.g. 5 and 10mm leaves for standard Millennium).
e Any MLC can be analyzed. See Customizing MLCs
* The image can be either orientation (pickets going up-down or left-right).
* The image can be at any SSD.
* Any EPID type can be used (aS500, aS1000, aS1200).

The EPID panel can have an x or y offset (i.e. translation).

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The image must be a DICOM image acquired via the EPID.

* The delivery must be parallel or nearly-parallel (<~5°) to an image edge; i.e. the collimator should be at 0, 90,
or 270 degrees.

Pre-Analysis

* Check for noise — Dead pixels can cause wild values in an otherwise well-behaved image. These values can
disrupt analysis, but pylinac will try to detect the presence of noise and will apply a median filter if detected.

* Check image inversion — Upon loading, the image is sampled near all 4 corners for pixel values. If it is greater
than the mean pixel value of the entire image the image is inverted.

¢ Determine orientation — The image is summed along each axis. Pixel percentile values of each axis sum are
sampled. The axis with a greater difference in percentile values is chosen as the orientation (The picket axis, it
is argued, will have more pixel value variation than the axis parallel to leaf motion.)

* Adjust for EPID sag — If a nonzero value is passed for the sag adjustment, the image is shifted along the axis
of the pickets; i.e. a +1 mm adjustment for an Up-Down picket image will move expected MLC positions up 1
mm.

Analysis

¢ Find the pickets — The mean profile of the image perpendicular to the MLC travel direction is taken. Major
peaks are assumed to be pickets.

¢ Find FWHM at each MLC position — For each picket, a sample of the image in the MLC travel direction is
taken at each MLC position. The center of the FWHM of the picket for that MLC position is recorded.

* Fit the picket to the positions & calculate error — Once all the MLC positions are determined, the positions
from each peak of a picket are fitted to a 1D polynomial which is considered the ideal picket. Differences of
each MLC position to the picket polynomial fit at that position are determined, which is the error. When plotted,
errors are tested against the tolerance and action tolerance as appropriate.

178 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.11.16 Troubleshooting

First, check the general Troubleshooting section. Specific to the picket fence analysis, there are a few things you can
do.

* Set the image inversion - If you get an error like this: ValueError: max() arg is an empty
sequence, one issue may be that the image has the wrong inversion (negative values are positive, etc). Set the
analyze flag invert to True to invert the image from the automatic detection. Additionally, if you’re using
wide pickets, the image inversion could be wrong. If the pickets are wider than the “valleys” between the pickets
this will almost always result in a wrong inversion.

* Crop the edges - This is far and away the most common problem. Elekta is notorious for having noisy/bad
edges. Pass a larger value into the constructor:

pf = PicketFence (..., crop_mm=7)

* Apply a filter upon load - While pylinac tries to correct for unreasonable noise in the image before analysis,
there may still be noise that causes analysis to fail. A way to check this is by applying a median filter upon
loading the image:

pf = PicketFence ('mypf.dcm', filter=5) # vary the filter size depending on the_
—image

Then try performing the analysis.

* Check for streak artifacts - It is possible in certain scenarios (e.g. TrueBeam dosimetry mode) to have note-
worthy artifacts in the image like so:

If the artifacts are in the same direction as the pickets then it is possible pylinac is tripping on these artifacts.
You can reacquire the image in another mode or simply try again in the same mode. You may also try cropping

5.11. Picket Fence 179

pylinac Documentation, Release 3.8.2

the image to exclude the artifact:

pf = PicketFence('mypf.dcm')
pf.image.array = mypf.image.array[200:400, 150:450] # or whatever values you want

¢ Set the number of pickets - If pylinac is catching too many pickets you can set the number of pickets to find
with analyze ().

* Crop the image - For Elekta images, the Oth column is often an extreme value. For any Elekta image, it is
suggested to crop the image. You can crop the image like so:

pf = PicketFence (r'my/pf.dcm'")
pf.image.crop (pixels=3)
pf.analyze ()

5.11.17 API Documentation

Main classes

These are the classes a typical user may interface with.

class pylinac.picketfence.PicketFence (filename: Union|str, pathlib. Path, Bina-
rylO], filter: Optional[int] = None, log: Op-
tional[str] = None, use_filename: bool =
False, mlc: Union[pylinac.picketfence. MLC,

pylinac.picketfence. MLCArrangement, str] =
<MLC.MILLENNIUM: {’name’: ’Millennium’, ’ar-
rangement’: <pylinac.picketfence. MLCArrangement
object>}>, crop_mm: int = 3, image_kwargs:
Optional[dict] = None)

Bases: object

A class used for analyzing EPID images where radiation strips have been formed by the MLCs. The strips are

assumed to be parallel to one another and normal to the image edge; i.e. a “left-right” or “up-down” orientation
is assumed. Further work could follow up by accounting for any angle.

Parameters
» filename — Name of the file as a string or a file-like object.

» filter - If None (default), no filtering will be done to the image. If an int, will perform
median filtering over image of size filter.

* log - Path to a log file corresponding to the delivery. The expected fluence of the log file
is used to construct the pickets. MLC peaks are then compared to an absolute reference
instead of a fitted picket.

* use_filename — If False (default), no action will be performed. If True, the file-
name will be searched for keywords that describe the gantry and/or collimator angle. For
example, if set to True and the file name was “PF_gantry45.dcm” the gantry would be
interpreted as being at 45 degrees.

* mlc — The MLC model of the image. Must be an option from the enum MLCs or an
MLCArrangement.

* crop_mm — The number of mm to crop from all edges. Elekta is infamous for having
columns of dead pixels on the side of their images. These need to be cleaned up first. For

180 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Varian images, this really shouldn’t make a difference unless the pickets are very close to
the edge. Generally speaking, they shouldn’t be for the best accuracy.

classmethod from url (url: str, filter: int = None, image_kwargs: Optional[dict] = None)
Instantiate from a URL.

classmethod from demo_image (filter: int = None)
Construct a PicketFence instance using the demo image.

classmethod from multiple_images (path_list: Iterable{Union[str, pathlib.Path]], dtype:
numpy.dtype = <class 'numpy.uint16’>, **kwargs)
Load and superimpose multiple images and instantiate a Starshot object.

Parameters

e path_list (iterable) — An iterable of path locations to the files to be
loaded/combined.

e kwargs —Passed to load multiples ().

passed
Boolean specifying if all MLC positions were within tolerance.

percent_passing
Return the percentage of MLC positions under tolerance.

max_error
Return the maximum error found.

max_error_picket
Return the picket number where the maximum error occurred.

max_error_ leaf
Return the leaf/leaf pair that had the maximum error. This will be a single int value (i.e. either/both A and
B) for classic analysis or a fully-qualified name for separate analysis. E.g. A43

failed_leaves () — Union[List[int], List[str]]
A list of the failed leaves. Either the leaf number or the bank+leaf number if using separate leaves.

abs_median_error
Return the median error found.

num_pickets
Return the number of pickets determined.

mean_picket_spacing
The average distance between pickets in mm.

plot_leaf profile (leaf: Union[str, int], picket: int, show: bool = True)
Plot the leaf profile of a given leaf pair parallel to leaf motion.

Parameters

e leaf — The leaf to plot. If separate_leaves is True, this will be a string like
“A15” or “B33”. If separate_leaves is False, this must be an int, like 15 or 33.

* picket — An int of the picket number. Pickets start from the 0-side of an image.
E.g. for left-right PFs, this would start on the left; for up-down this would start at the
bottom.

save_leaf_profile (filename: Union[str, pathlib.Path, BinarylO], leaf: Union[str, int], picket: int,

**kwargs)
Save the leaf profile plot to disk or stream. See plot_leaf_profile for parameter hints. Kwargs are passed

to matplotlib.savefig()

5.11. Picket Fence 181

pylinac Documentation, Release 3.8.2

static run_demo (tolerance: float = 0.5, action_tolerance: float = None) — None
Run the Picket Fence demo using the demo image. See analyze() for parameter info.

analyze (tolerance: float = 0.5, action_tolerance: Optional[float] = None, num_pickets:
Optional[int] = None, sag_adjustment: Union[float, int] = 0, orientation:
Union[pylinac.picketfence.Orientation, str, None] = None, invert: bool = False,

leaf_analysis_width_ratio: float = 0.4, picket_spacing: Optional[float] = None,
height_threshold: float = 0.5, edge_threshold: float = 1.5, peak_sort: str = ’peak_heights’,
required_prominence: float = 0.2, fwxm: int = 50, separate_leaves: bool = False,
nominal_gap_mm: float = 3) — None

Analyze the picket fence image.

Parameters

* tolerance - The tolerance of difference in mm between an MLC pair position and
the picket fit line.

* action_tolerance - If None (default), no action tolerance is set or compared to.
If an int or float, the MLC pair measurement is also compared to this tolerance. Must
be lower than tolerance. This value is usually meant to indicate that a physicist should
take an “action” to reduce the error, but should not stop treatment.

* num pickets — The number of pickets in the image. A helper parameter to limit
the total number of pickets, only needed if analysis is catching more pickets than there
really are.

* sag_adjustment — The amount of shift in mm to apply to the image to correct for
EPID sag. For Up-Down picket images, positive moves the image down, negative up.
For Left-Right picket images, positive moves the image left, negative right.

* orientation — If None (default), the orientation is automatically determined. If
for some reason the determined orientation is not correct, you can pass it directly
using this parameter. If passed a string with ‘u’ (e.g. ‘up-down’, ‘u-d’, ‘up’) it will
set the orientation of the pickets as going up-down. If passed a string with ‘I’ (e.g.
‘left-right’, ‘Ir’, ‘left’) it will set it as going left-right.

* invert — If False (default), the inversion of the image is automatically detected and
used. If True, the image inversion is reversed from the automatic detection. This is
useful when runtime errors are encountered.

* leaf analysis_width_ratio — The ratio of the leaf width to use as part of
the evaluation. E.g. if the ratio is 0.5, the center half of the leaf will be used. This
helps avoid tongue and groove influence.

* picket_spacing — If None (default), the spacing between pickets is determined
automatically. If given, it should be an int or float specifying the number of PIXELS
apart the pickets are.

* height_threshold - The threshold that the MLC peak needs to be above to be
considered a picket (vs background). Lower if not all leaves are being caught. Note
that for FFF beams this would very likely need to be lowered.

* edge_threshold — The threshold of pixel value standard deviation within the
analysis window of the MLC leaf to be considered a full leaf. This is how pylinac
removes MLCs that are eclipsed by the jaw. This also is how to omit or catch leaves
at the edge of the field. Raise to catch more edge leaves.

* peak_sort - Either ‘peak_heights’ or ‘prominences’. This is the method for deter-
mining the peaks. Usually not needed unless the wrong number of pickets have been
detected. See the scipy.signal.find_peaks function for more information.

182

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* required_prominence — The required height of the picket (not individual
MLCs) to be considered a peak. Pylinac takes a mean of the image axis perpendicular
to the leaf motion to get an initial guess of the peak locations and also to determine
picket spacing. Changing this can be useful for wide-gap tests where the shape of
the beam horns can form two or more local maximums in the picket area. Increase if
for wide-gap images that are catching too many pickets. Consider lowering for FFF
beams if there are analysis issues.

Warning: We do not recommend performing FFF wide-gap PF tests. Make your
FFF pickets narrow or measure with a flat beam instead.

» fwxm - For each MLC Kkiss, the profile is a curve from low to high to low. The FWXM
(0-100) is the height to use to measure to determine the center of the curve, which is
the surrogate for MLC kiss position. I.e. for each MLC kiss, what height of the picket
should you use to actually determine the center location? It is unusual to change this.
If you have something in the way (we’ve seen crazy examples with a BB in the way)
you may want to increase this.

* separate_leaves — Whether to analyze leaves individually (each tip) or as a set
(combined, center of the picket). False is the default for backwards compatibility.

* nominal_gap_mm — The expected gap of the pickets in mm. Only used when
separate leaves is True. Due to the DLG and EPID scattering, this value will have to
be determined by you with a known good delivery.

plot_analyzed_image (guard_rails: bool = True, mlc_peaks: bool = True, overlay: bool =
True, leaf _error_subplot: bool = True, show: bool = True, figure_size:
Union[str, Tuple] = ’auto’) — None
Plot the analyzed image.

Parameters
* guard_rails — Do/don’t plot the picket “guard rails” around the ideal picket
* mlc_peaks — Do/don’t plot the detected MLC peak positions.
* overlay - Do/don’t plot the alpha overlay of the leaf status.

* leaf_ error_subplot - If True, plots a linked leaf error subplot adjacent to the
PF image plotting the average and standard deviation of leaf error.

* show — Whether to display the plot. Set to false for saving to a figure, etc.

» figure size — Either ‘auto’ or a tuple. If auto, the figure size is set depending on
the orientation. If a tuple, this is the figure size to use.

save_analyzed_image (filename: Union[str, _io.ByteslO], guard_rails: bool = True, mlc_peaks:
bool = True, overlay: bool = True, leaf _error_subplot: bool = False,

**kwargs) — None
Save the analyzed figure to a file. See plot_analyzed_image () for further parameter info.

results (as_list: bool = False) — str
Return results of analysis. Use with print().

results_data (as_dict=False) — Union[pylinac.picketfence.PFResult, dict]
Present the results data and metadata as a dataclass, dict, or tuple. The default return type is a dataclass.

5.11. Picket Fence 183

pylinac Documentation, Release 3.8.2

publish_pdf (filename: Union/[str, _io.ByteslO], notes: str = None, open_file: bool = False, meta-
data: dict = None, bins: int = 10, logo: Union[pathlib.Path, str, None] = None) —

None
Publish (print) a PDF containing the analysis, images, and quantitative results.
Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

* bins (int)— Number of bins to show for the histogram

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

mlc _skew () — float
Apparent rotation in degrees of the MLC. This could be conflated with the EPID skew, so be careful when
interpreting this value.

plot_histogram (bins: int = 10, show: bool = True) — None
Plot a histogram of the leaf errors

save_histogram (filename: [<class ’str’>, <class ’'pathlib.Path’>, <class ’typing.BinarylO’>],
bins: int = 10, **kwargs) — None
Save a histogram of the leaf errors

orientation
The orientation of the image, either Up-Down or Left-Right.

class pylinac.picketfence.MLCArrangement (leaf _arrangement: List[Tuple[int, float]], offset:
float = 0)
Bases: object

Construct an MLC array
Parameters

* leaf arrangement (Description of the leaf arrangement. List
of tuples containing the number of leaves and leaf width.) —
E.g. (10, 5) is 10 leaves with 5Smm widths.

e offset (The offset in mm of the leaves. Used for asymmetric
arrangements. E.g. -2.5mm will shift the arrangement 2.5mm
to the left.)-

class pylinac.picketfence.Orientation
Bases: enum.Enum

Possible orientations of the image
UP_DOWN = 'Up-Down'

LEFT _RIGHT = 'Left-Right'

184 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class pylinac.picketfence.MLC
Bases: enum.Enum

The pre-built MLC types

MILLENNIUM = {'arrangement': <pylinac.picketfence.MLCArrangement object>, 'name':
HD_MILLENNIUM = {'arrangement': <pylinac.picketfence.MLCArrangement object>, 'name':
BMOD = {'arrangement': <pylinac.picketfence.MLCArrangement object>, 'name': 'B Mod'}
AGILITY = {'arrangement': <pylinac.picketfence.MLCArrangement object>, 'name':

MLCI = {'arrangement': <pylinac.picketfence.MLCArrangement object>, 'name': 'MLCi'}
HALCYON_DISTAL = {'arrangement': <pylinac.picketfence.MLCArrangement object>, 'name':
HALCYON_PROXIMAL = {'arrangement': <pylinac.picketfence.MLCArrangement object>,

class pylinac.picketfence.PFResult (tolerance_mm: float, action_tolerance_mm: float, per-
cent_leaves_passing: float, number_of pickets: int, ab-
solute_median_error_mm: float, max_error_mm: float,
max_error_picket: int, max_error_leaf: Union[str, int],
mean_picket_spacing_mm: float, offsets_from_cax_mm:
List[float], passed: bool, failed_leaves: Union[List[str],

List[int]], mlc_skew: float)
Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. It is a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.
tolerance_mm = None
action_tolerance_mm = None
percent_leaves_passing = None
number_ of_ pickets = None
absolute_median_error_mm = None
max_error_mm = None
max_error_picket = None
max_error_leaf = None
mean_picket_spacing mm = None
offsets_from cax_mm = None
passed = None

failed leaves = None

mlc _skew = None

Supporting Classes

You generally won’t have to interface with these unless you’re doing advanced behavior.

class pylinac.picketfence.PFDicomImage (path: str, **kwargs)
Bases: pylinac.core.image.LinacDicomImage

5.11. Picket Fence 185

pylinac Documentation, Release 3.8.2

A subclass of a DICOM image that checks for noise and inversion when instantiated. Can also adjust for EPID
sag.

adjust_for_sag (sag: int, orientation: Union[str, pylinac.picketfence.Orientation]) — None
Roll the image to adjust for EPID sag.

class pylinac.picketfence.Picket (mlc_measurements: List[pylinac.picketfence. MLCValue],
log_fits, orientation: pylinac.picketfence.Orientation, im-
age: pylinac.picketfence. PFDicomlmage, tolerance: float,
separate_leaves: bool, nominal_gap: float)
Bases: object
Holds picket information in a Picket Fence test.

get_fit () — numpy.polyld
The fit of a polynomial to the MLC measurements.

skew () — float
The slope/skew of the picket

dist2cax
The distance from the CAX to the picket, in mm.

left_guard_ separated

The line representing the left-sided guard rails. When not doing separate analysis, the left and right rails
will overlap.

right_guard_separated
The line representing the right-sided guard rails.

add_guards_to_axes (axis: matplotlib.axes._axes.Axes, color: str = ’g’) — None
Plot guard rails to the axis.

class pylinac.picketfence.MLCValue (picket_num: int, approx_idx: int, leaf width:
float, leaf center: float, picket_spacing: float,
orientation: pylinac.picketfence.Orientation,
leaf _analysis_width_ratio: float, tolerance: float,

action_tolerance: Optional[float], leaf num: int, ap-
prox_peak_val: float, image_window: numpy.ndarray,
image: pylinac.picketfence. PFDicomImage, fwxm: int,
separate_leaves: bool, nominal_gap_mm: float)

Bases: object

Representation of an MLC kiss or of each MLC about a kiss.

full leaf nums

The fully-qualified leaf names. This will be the simple leaf number for traditional analysis or the
bank+leaf num for separate leaves.

plot2axes (axes: matplotlib.axes._axes.Axes, width: Union[float, int] = 1) — None
Plot the measurement to the axes.

passed
Whether the MLC kiss or leaf was within tolerance.

passed_action
Whether the MLC kiss or leaf was within the action tolerance.

bg _color

The color of the measurement when the PF image is plotted, based on pass/fail status.
picket_positions

The position(s) of the pickets in mm

186 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

error
The error (difference) of the MLC measurement and the picket fit. If using individual leaf analysis, returns
both errors otherwise return one.

max abs_error
The maximum absolute error

marker_lines
The line(s) representing the MLC measurement position. When using separated leaves there are two lines.
Traditional analysis returns one.

plot_overlay2axes (axes) — None
Create a rectangle overlay with the width of the error. IL.e. it stretches from the picket fit to the MLC
position. Gives more visual size to the

5.12 Winston-Lutz

5.12.1 Overview

The Winston-Lutz module loads and processes EPID images that have acquired Winston-Lutz type images.
Features:

* Couch shift instructions - After running a WL test, get immediate feedback on how to shift the couch. Couch
values can also be passed in and the new couch values will be presented so you don’t have to do that pesky
conversion. “Do I subtract that number or add it?”

¢ Automatic field & BB positioning - When an image or directory is loaded, the field CAX and the BB are
automatically found, along with the vector and scalar distance between them.

¢ Isocenter size determination - Using backprojections of the EPID images, the 3D gantry isocenter size and
position can be determined independent of the BB position. Additionally, the 2D planar isocenter size of the
collimator and couch can also be determined.

» Image plotting - WL images can be plotted separately or together, each of which shows the field CAX, BB and
scalar distance from BB to CAX.

» Axis deviation plots - Plot the variation of the gantry, collimator, couch, and EPID in each plane as well as
RMS variation.

* File name interpretation - Rename DICOM filenames to include axis information for linacs that don’t include
such information in the DICOM tags. E.g. “myWL_gantry45_coll0_couch315.dcm”.

5.12.2 Running the Demo

To run the Winston-Lutz demo, create a script or start an interpreter session and input:

from pylinac import WinstonLutz
WinstonLutz.run_demo ()

Results will be printed to the console and a figure showing the zoomed-in images will be generated:

Winston-Lutz Analysis

Number of images: 17
Maximum 2D CAX->BB distance: 1.23mm

(continues on next page)

5.12. Winston-Lutz 187

pylinac Documentation, Release 3.8.2

(continued from previous page)

Median 2D CAX->BB distance: 0.69mm

Shift to iso: facing gantry, move BB: RIGHT 0.36mm; OUT O.36mm; DOWN O.20mm
Gantry 3D isocenter diameter: 1.05mm (9/17 images considered)

Maximum Gantry RMS deviation (mm): 1.03mm

Maximum EPID RMS deviation (mm): 1.31mm

Gantry+Collimator 3D isocenter diameter: 1.l1lmm (13/17 images considered)
Collimator 2D isocenter diameter: 1.09mm (7/17 images considered)

Maximum Collimator RMS deviation (mm): 0.79

Couch 2D isocenter diameter: 2.32mm (7/17 images considered)

Maximum Couch RMS deviation (mm): 1.23

In-plane Gantry displacement In-plane Epid displacement
1.0 —= #K\\ A
}_’_‘/r—' \ 1.0 \
7 \\ \\\ ‘(dgf,
05 7 051 ~ T
€ 4 A £ Jt\ ’\0/_._/_._/_« -®- Y-axis .
£ ¥ PR N , E 00 M g = =k~ X/Z-axis |
0.0 < NE b s — A . —— RMS
] Ak ——aA —05 R N
LN / —e- Y-axis : r./ N
05 N |/ —k- X/Z-axis 1o % g
—0. N | 1. -
— ‘RMS ‘ o
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Gantry angle Gantry angle
In-plane Collimator displacement In-plane Couch displacement
075 - l
VT~ 1.0 2
/ S 27N
0.50 4 S s N\
i/ “\\ 0.5 / e L \}
0.25 f—- s RS e
£ K ~ N, £ ’ -
€ s ~ (] g 001 @ — 7
0.00 S B e
N _05 \ s/
_0254 & —o- Y-axis : \ 7 —- Y-axis
—k- X/Z-aXis . N —k- X/Z-axis
-0.50 —— RMS 4 — -Lo N2 —— RMS
| i T » : :
0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
Collimator angle Couch angle
Gantry wobble Collimator wobble Couch wobble
€ E €
£ b S
o
3 - -
- g o
& @ g
[o ‘0
g z
> 2 =
£ E 2
© = (e}
6] 3 o
O
Gantry positions superimposed Collimator positions superimposed Couch positions superimposed

5.12.3 Image Acquisition

The Winston-Lutz module will only load EPID images. The images can be from any EPID however, and any SID. To
ensure the most accurate results, a few simple tips should be followed. Note that these are not unique to pylinac; most
Winston-Lutz analyses require these steps:

* The BB should be fully within the field of view.
e The MLC field should be symmetric.

188 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

¢ The BB should be <2cm from the isocenter.

Axis Values

Pylinac uses the Image types & output definitions definition to bin images. Regardless of the axis values, pylinac
will calculate some values like max/median BB->CAX distance. Other values such as gantry iso size will only use
Reference and Gantry image types as defined in the linked section. We recommend reviewing the analysis definitions
and acquiring images according to the values you are interested in. Some examples are below. Note that these are not
mutually exclusive:

» Simple max distance to BB: Any axis values; any combination of axis values are allowed.
* Gantry iso size: Gantry value can be any; all other axes must be 0.
* Collimator iso size: Collimator value can be any; all other axes must be 0.

If, e.g., all axis values are combinations of axes then gantry iso size will not be calculated. Further, the
plot_analyzed_image method assumes Gantry, Collimator, and/or Couch image sets. If only combinations
are passed, this image will be empty. A good practice is also to acquire a reference image if possible, meaning all axes
at 0.

5.12.4 Coordinate Space

Note: In pylinac 2.3, the coordinates changed to be compliant with IEC 61217. Compared to previous versions, the
Y and Z axis have been swapped. The new Z axis has also flipped which way is positive.

When interpreting results from a Winston-Lutz test, it’s important to know the coordinates, origin, etc. Pylinac uses
IEC 61217 coordinate space. Colloquial descriptions are as if standing at the foot of the couch looking at the gantry.

» X-axis - Lateral, or left-right, with right being positive.
* Y-axis - Superior-Inferior, or in-out, with sup/in being positive.

¢ Z-axis - Anterior-Posterior, or up-down, with up/anterior being positive.

Passing a coordinate system

New in version 3.6.

It is possible to pass in your machine’s coordinate scale/system to the analyze parameter like so:

from pylinac.winston_lutz import WinstonLutz, MachineScale

wl = WinstonLutz (...)
wl.analyze (..., machine_scale=MachineScale.VARIAN_IEC)

This will change the BB shift vector and shift instructions accordingly. If you don’t use the shift vector or instructions
then you won’t need to worry about this parameter.

5.12.5 Typical Use

Analyzing a Winston-Lutz test is simple. First, let’s import the class:

5.12. Winston-Lutz 189

pylinac Documentation, Release 3.8.2

from pylinac import WinstonLutz

From here, you can load a directory:

my_directory = 'path/to/wl_images'
wl = WinstonLutz (my_directory)

You can also load a ZIP archive with the images in it:

’wl = WinstonLutz.from_zip('path/to/wl.zip")

Now, analyze it:

’wl.analyze(bb_size_mm:5)

And that’s it! You can now view images, print the results, or publish a PDF report:

plot all the images
wl.plot_images ()

plot an individual image
wl.images[3] .plot ()

save a figure of the image plots
wl.save_plots('wltest.png')

print to PDF

wl.publish_pdf ('mywl.pdf")

If you want to shift the BB based on the results and perform the test again there is a method for that:

print (wl.bb_shift_instructions())
LEFT: 0.lmm, DOWN: 0.22mm,

You can also pass in your couch coordinates and the new values will be generated:

print (wl.bb_shift_instructions (couch_vrt=0.41, couch_lng=96.23, couch_lat=0.12))
New couch coordinates (mm): VRT: 0.32; LNG: 96.11; LAT: 0.11

5.12.6 Accessing data

Changed in version 3.0.

Using the WL module in your own scripts? While the analysis results can be printed out, if you intend on using them
elsewhere (e.g. in an API), they can be accessed the easiest by using the results_data () method which returns a
WinstonLutzResult instance.

Note: While the pylinac tooling may change under the hood, this object should remain largely the same and/or
expand. Thus, using this is more stable than accessing attrs directly.

Continuing from above:

data = wl.results_data()
data.num_total_images
data.max_2d_cax_to_bb_mm
and more

(continues on next page)

190 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

return as a dict
data_dict = wl.results_data (as_dict=True)
data_dict['num_total_ images']

5.12.7 Accessing individual images

Each image can be plotted and otherwise accessed easily:

wl = WinstonLutz (...)

access first image

wl.images[0] # these are subclasses of the pylinac.core.image.DicomImage class, with,
—a few special props

plot 3rd image

wl.images[0] .plot () # the plot method is special to the WL module and shows the BB,
—~EPID, and Field CAX.

get 2D x/y vector of an image

wl.images[4].cax2bb_vector # this is a Vector with a .x and .y attribute. Note that,,
—Xx and y are in respect to the image, not the fixed room coordinates.

5.12.8 Analyzing a single image

You may optionally analyze a single image if that is your preference. Obviously, no 3D computations are performed.

Note: This is the same class used under the hood for the WinstonLutz images, so any attribute you currently
use with something like wl.images[2] .cax2bb_vector will work for the below with a direct call: w12d.
cax2bb_vector.

from pylinac import WinstonLutz2D

wl2d = WinstonLutz2D ("my/path/...")
wl2d.analyze (bb_size_mm=4) # same as WinstonLutz class
wl2d.plot ()

This class does not have all the methods that WinstonLut z has for mostly obvious reasons and lower likelihood of
being used directly.

5.12.9 Passing in Axis values

If your linac EPID images do not include axis information (such as Elekta) there are two ways to pass the data in.
First, you can specify it in the file name. Any and all of the three axes can be defined. If one is not defined and is not
in the DICOM tags, it will default to 0. The syntax to define the axes: “<*>gantryO<*>coll0<*>couchO<*>". There
can be any text before, after, or in between each axis definition. However, the axes numerical value must immediately
follow the axis name. Axis names are also fixed. The following examples are valid:

* MyWL-gantry0-coll90-couch315.dcm
e gantry90_stuff_coll45-couch0O.dcm
* abc-couch45-gantry315-coll0.dcm

5.12. Winston-Lutz 191

pylinac Documentation, Release 3.8.2

* 01-gantry0-abcd-coll30couch10abe.dem
* abc-gantry30.dem
* coll45abc.dcm

The following are invalid:
e mywl-gantry=0-coll=90-couch=315.dcm
» gan45_collimator30-table270.dcm

Using the filenames within the code is done by passing the use_filenames=True flag to the init method:

my_directory = 'path/to/wl_images'
wl = WinstonLutz (my_directory, use_filenames=True)

Note: If using filenames any relevant axes must be defined, otherwise they will default to zero. For example, if the
acquisition was at gantry=45, coll=15, couch=0 then the filename must include both the gantry and collimator in the
name (<...gantry45...colll5....decm>). For this example, the couch need not be defined since it is 0.

The other way of inputting axis information is passing the axis_mapping parameter to the constructor. This is a
dictionary with the filenames as keys and a tuple of ints for the gantry, coll, and couch:

directory = 'path/to/wl/dir’

mapping = {'filel.dcm': (0O, 0, 0), 'file2.dcm': (90, 315, 45), ...}
wl = WinstonLutz (directory=directory, axis_mapping=mapping)

analyze as normal

wl.analyze (...)

Note: The filenames should be local to the directory. In the above example the full paths would be
path/to/wl/dir/filel.dcm, and path/to/wl/dir/file2.dcm.

5.12.10 Changing BB detection size

To change the size of BB pylinac is expecting you can pass the size to the analyze method:

import pylinac

wl = WinstonLutz (...)
wl.analyze (bb_size_mm=3)

5.12.11 Image types & output definitions

The following terms are used in pylinac’s WL module and are worth defining.

Image axis definitions/Image types Images are classified into 1 of 6 image types, depending on the position of the
axes. The image type is then used for determining whether to use the image for the given calculation. Image types
allow the module to isolate the analysis to a given axis if needed. E.g. for gantry iso size, as opposed to overall iso
size, only the gantry should be moving so that no other variables influence it’s calculation.

» Reference: This is when all axes are at value 0 (gantry=coll=couch=0).

192 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* Gantry: This is when all axes but gantry are at value 0, e.g. gantry=45, coll=0, couch=0.

* Collimator: This is when all axes but collimator are at value 0.

¢ Couch: This is when all axes but the couch are at value 0.

* GB Combo: This is when either the gantry or collimator are non-zero but the couch is 0.

¢ GBP Combo: This is where the couch is kicked and the gantry and/or collimator are rotated.
Analysis definitions Given the above terms, the following calculations are performed.

* Maximum 2D CAX->BB distance (scalar, mm): Analyzes all images individually for the maximum 2D dis-
tance from rad field center to the BB.

¢ Median 2D CAX->BB distance (scalar, mm): Same as above but the median.

« Shift of BB to isocenter (vector, mm): The instructions of how to move the BB/couch in order to place the BB
at the determined isocenter.

e Gantry 3D isocenter diameter (scalar, mm): Analyzes only the gantry axis images (see above image types).
Applies backprojection of the CAX in 3D and then minimizes a sphere that touches all the 3D backprojection
lines.

¢ Gantry+Collimator 3D isocenter diameter (scalar, mm): Same as above but also considers Collimator and
GB Combo images.

¢ [Couch, Collimator] 2D isocenter diameter (scalar, mm): Analyzes only the collimator or couch images to
determine the size of the isocenter according to the axis in question. The maximum distance between any of the
points is the isocenter size. The couch and collimator are treated separately for obvious reasons. If no images
are given that rotate about the axis in question (e.g. cardinal gantry angles only) the isocenter size will default
to 0.

¢ [Maximum, All][Gantry, Collimator, Couch, GB Combo, GBP Combo, EPID] RMS deviation (array of
scalars, mm): Analyzes the images for the axis in question to determine the overall RMS inclusive of all 3
coordinate axes (vert, long, lat). Le. this is the overall displacement as a function of the axis in question. For
EPID, the displacement is calculated as the distance from image center to BB for all images with couch=0. If
no images are given that rotate about the axis in question (e.g. cardinal gantry angles only) the isocenter size
will default to 0.

5.12.12 Algorithm

The Winston-Lutz algorithm is based on the works of Winkler et al, Du et al, and Low et al. Winkler found that the
collimator and couch iso could be found using a minimum optimization of the field CAX points. They also found that
the gantry isocenter could by found by “backprojecting” the field CAX as a line in 3D coordinate space, with the BB
being the reference point. This method is used to find the gantry isocenter size.

Low determined the geometric transformations to apply to 2D planar images to calculate the shift to apply to the BB.
This method is used to determine the shift instructions. Specifically, equations 6 and 9.

Note: If doing research, it is very important to note that Low implicitly used the “Varian” coordinate system. This
is an old coordinate system and any new Varian linac actually uses IEC 61217. However, because the gantry and
couch definitions are different, the matrix definitions are technically incorrect when using IEC 61217. By default,
Pylinac assumes the images are in IEC 61217 scale and will internally convert it to varian scale to be able to use Low’s
equations. To use a different scale use the machine_scale parameter, shown here Passing a coordinate system.

The algorithm works like such:

Allowances

5.12. Winston-Lutz 193

http://iopscience.iop.org/article/10.1088/0031-9155/48/9/303/meta;jsessionid=269700F201744D2EAB897C14D1F4E7B3.c2.iopscience.cld.iop.org
http://scitation.aip.org/content/aapm/journal/medphys/37/5/10.1118/1.3397452
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597475

pylinac Documentation, Release 3.8.2

* The images can be acquired with any EPID (aS500, aS1000, aS1200) at any SID.

» The BB does not need to be near the real isocenter to determine isocenter sizes, but does affect the 2D image
analysis.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The BB must be fully within the field of view.
* The BB must be within 2.0cm of the real isocenter.
* The images must be acquired with the EPID.
* The linac scale should be IEC 61217.
Analysis

¢ Find the field CAX - The spread in pixel values (max - min) is divided by 2, and any pixels above the threshold
is associated with the open field. The pixels are converted to black & white and the center of mass of the pixels
is assumed to be the field CAX.

* Find the BB — The image is converted to binary based on pixel values both above the 50% threshold as above,
and below the upper threshold. The upper threshold is an iterative value, starting at the image maximum value,
that is lowered slightly when the BB is not found. If the binary image has a reasonably circular ROI, the BB is
considered found and the pixel-weighted center of mass of the BB is considered the BB location.

Note: Strictly speaking, the following aren’t required analyses, but are explained for fullness and clarity.

* Backproject the CAX for gantry images — Based on the vector of the BB to the field CAX and the gantry
angle, a 3D line projection of the CAX is constructed. The BB is considered at the origin. Only images where
the couch was at 0 are used for CAX projection lines.

* Determine gantry isocenter size - Using the backprojection lines, an optimization function is run to minimize
the maximum distance to any line. The optimized distance is the isocenter radius.

* Determine collimator isocenter size - The maximum distance between any two field CAX locations is calcu-
lated for all collimator images.

* Determine couch isocenter size - Instead of using the BB as the non-moving reference point, which is now
moving with the couch, the Reference image (gantry = collimator = couch = 0) CAX location is the reference.
The maximum distance between any two BB points is calculated and taken as the isocenter size.

Note: Collimator iso size is always in the plane normal to the gantry, while couch iso size is always in the x-z plane.

5.12.13 Benchmarking the Algorithm

With the image generator module we can create test images to test the WL algorithm on known results. This is useful
to isolate what is or isn’t working if the algorithm doesn’t work on a given image and when commissioning pylinac.
It is common, especially with the WL module, to question the accuracy of the algorithm. Since no linac is perfect and
the results are sub-millimeter, discerning what is true error vs algorithmic error can be difficult. The image generator
module is a perfect solution since it can remove or reproduce the former error.

194 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Perfect Delivery

Let’s deliver a set of perfect images. This should result in near-0 deviations and isocenter size. The utility function
used here will produce 4 images at the 4 cardinal gantry angles with all other axes at 0, with a BB of 4mm diameter,
and a field size of 4x4cm:

import pylinac

from pylinac.core.image_generator import (
GaussianFilterLayer,
FilteredFieldLayer,
AS1200Image,
RandomNoiselayer,
generate_winstonlutz,

wl_dir = 'wl_ dir'
generate_winstonlutz (
AS1200Image (),
FilteredFieldLayer,
dir_out=wl_dir,
final layers=[GaussianFilterLayer(),],
bb_size_mm=4,
field_size_mm= (40, 40),

wl = pylinac.WinstonLutz (wl_dir)
wl.analyze (bb_size_mm=4)
wl.plot_images ()

Gantry images

wl_dir/WL G=90, C=0, P=0;
Field=(40, 40)mm m @
left=0, in=0, u B try
tilt=0, Gantry sag=0.dcm

eft=0, , up=0;
tilt=0, Gantry sag=0.dcm

CAX to BB: 0.00mm
CAX to BB: 0.00mm
CAX to BB: 0.00mm
CAX to BB: 0.00mm

G=0. B=0. P=0 G=90. B=0. P=0 G=180. B=0. P=0 G=270. B=0. P=0

which has an output of:

Winston-Lutz Analysis

Number of images: 4

Maximum 2D CAX->BB distance: 0.00mm

Median 2D CAX->BB distance: 0.00mm

Shift to iso: facing gantry, move BB: RIGHT 0.00mm; IN 0.00Omm; UP 0.00mm
Gantry 3D isocenter diameter: 0.00mm (4/4 images considered)

Maximum Gantry RMS deviation (mm): 0.00Omm

Maximum EPID RMS deviation (mm): 0.00mm

Gantry+Collimator 3D isocenter diameter: 0.00mm (4/4 images considered)
Collimator 2D isocenter diameter: 0.00mm (1/4 images considered)
Maximum Collimator RMS deviation (mm): 0.00

Couch 2D isocenter diameter: 0.00mm (1/4 images considered)

Maximum Couch RMS deviation (mm): 0.00

5.12. Winston-Lutz 195

pylinac Documentation, Release 3.8.2

As shown, we have perfect results.

Offset BB

Let’s now offset the BB by 1mm to the left:

import pylinac

from pylinac.core.image_generator import (
GaussianFilterLayer,
FilteredFieldLayer,
AS1200Image,
RandomNoiselayer,
generate_winstonlutz,

wl_dir = 'wl_dir'

generate_winstonlutz (
AS1200Image (),
FilteredFieldLayer,
dir_out=wl_dir,
final_layers=[GaussianFilterLayer(),],
bb_size_mm=4,
field_size_mm= (40, 40),
offset_mm_left=1,

wl = pylinac.WinstonLutz (wl_dir)
wl.analyze (bb_size_mm=4)
wl.plot_images ()

Gantry images

wl_dir/WL G=270, C=0, P=0;
Field=(40, 40)mm;

I in=0, Gantry

Gantry sag=0.dcm

wl_dir/WL G=1
Field=(40, 40)
I

mm @
left=1, in=0, u, Gantry

g , e n=0,
tilt=0, Gantry sag=0.dcm tilt=0, Gantry sag=0.dcm

CAX to BB: 1.01mm
CAX to BB: 0.00mm
CAX to BB: 1.01mm
CAX to BB: 0.00mm

G=0. B=0. P=0 G=90. B=0. P=0 G=180. B=0. P=0 G=270. B=0. P=0

with an output of:

Winston-Lutz Analysis

Number of images: 4

Maximum 2D CAX->BB distance: 1.01lmm

Median 2D CAX->BB distance: 0.50mm

Shift to iso: facing gantry, move BB: RIGHT 1.0lmm; IN 0.00mm; UP 0.00mm
Gantry 3D isocenter diameter: 0.00mm (4/4 images considered)

Maximum Gantry RMS deviation (mm): 1.0lmm

Maximum EPID RMS deviation (mm): 0.00mm

Gantry+Collimator 3D isocenter diameter: 0.00mm (4/4 images considered)
Collimator 2D isocenter diameter: 0.00mm (1/4 images considered)

Maximum Collimator RMS deviation (mm): 0.00

(continues on next page)

196 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

Couch 2D isocenter diameter: 0.00mm (1/4 images considered)
Maximum Couch RMS deviation (mm): 0.00

We have correctly found that the max distance is Imm and the required shift to iso is Imm to the right (since we placed
the bb to the left).

Gantry Tilt

We can simulate gantry tilt, where at 0 and 180 the gantry tilts forward and backward respectively. We use a realistic
value of Imm. Note that everything else is perfect:

import pylinac

from pylinac.core.image_generator import (
GaussianFilterLayer,
FilteredFieldLayer,
AS1200Image,
RandomNoiselayer,
generate_winstonlutz,

wl_dir = 'wl_dir'
generate_winstonlutz (
AS1200Image (),
FilteredFieldLayer,
dir_out=wl_dir,
final_ layers=[GaussianFilterLayer(),],
bb_size_mm=4,
field_size_mm= (40, 40),
gantry_tilt=1,

wl = pylinac.WinstonLutz (wl_dir)
wl.analyze (bb_size_mm=4)
wl.plot_images ()

Gantry images
wl_dir/WL G=90, C=0, P=| o

wl_dir/WL G=270, C=0 P=0;
Field=(40, 40)m
lef i

wl_dir/WL G=0, C=0, P=0;

wl_dir/WL G=180, C=0, P=0;
Fleld (40, 40) =4
left:

Fleld (40, 40)m

4mi
left=0, in=0, up= Gantry
tilt=1, Gantry sag=0.dcm

tilt=1, Gantrysag 0.dcm

up: =0,
tilt=1, Gantry sag=0.dcm tllt 1, Gantry sag=0.dcm

CAX to BB: 0.90mm
CAX to BB: 0.00mm
CAX to BB: 0.90mm
CAX to BB: 0.00mm

G=0. B=0. P=0 G=90. B=0. P=0 G=180. B=0. P=0 G=270. B=0. P=0

with output of:

Winston-Lutz Analysis

Number of images: 4

Maximum 2D CAX->BB distance: 0.90mm

Median 2D CAX->BB distance: 0.45mm

Shift to iso: facing gantry, move BB: LEFT 0.00mm; IN 0.0Omm; UP 0.0Omm

(continues on next page)

5.12. Winston-Lutz 197

pylinac Documentation, Release 3.8.2

(continued from previous page)

Gantry 3D isocenter diameter: 1.79mm (4/4 images considered)

Maximum Gantry RMS deviation (mm): 0.90mm

Maximum EPID RMS deviation (mm): 0.90mm

Gantry+Collimator 3D isocenter diameter: 1.79mm (4/4 images considered)
Collimator 2D isocenter diameter: 0.00mm (1/4 images considered)
Maximum Collimator RMS deviation (mm): 0.00

Couch 2D isocenter diameter: 0.00mm (1/4 images considered)

Maximum Couch RMS deviation (mm): 0.00

Note that since the tilt is symmetric the shift to iso is 0 despite our non-zero median distance. l.e. we are at iso, the iso
just isn’t perfect and we are thus at the best possible position.

Perfect Multi-Axis

We can also vary the axis data for the images produced. Below we create a typical multi-axis WL with varying gantry,
collimator, and couch (cardinal values for axis of interest with all other axes at 0):

import pylinac

from pylinac.core.image_generator import (
GaussianFilterLayer,
FilteredFieldLayer,
AS1200Image,
RandomNoiselayer,
generate_winstonlutz,

wl_dir = 'wl_ dir'
generate_winstonlutz (
AS1200Image (),
FilteredFieldLayer,
dir_out=wl_dir,
final_ layers=[GaussianFilterLayer(),],
bb_size_mm=4,
field_size_mm= (40, 40),
image_axes=[(0, 0, 0), (O, 90, 0), (0, 270, 0),
(90, 0, 0), (180, 0, 0), (270, 0, 0),
(0, 0, 90), (0, 0, 270)]

wl = pylinac.WinstonLutz (wl_dir)
wl.analyze (bb_size_mm=4)
wl.plot_images ()

Gantry images

wl_dir/WL G=270, C=0, P=0;
m mm Field=(40, 40)mm; BB=4mm @

left=0, in=0, u antry , Gantry left=0, in=0, u antry

tilt=0, Gantry sag=0.dcm tilt=0, Gantry sag=0.dcm

tilt=0', Gant’ry sag=0.dcm

CAX to BB: 0.00mm
CAX to BB: 0.00mm
CAX to BB: 0.00mm
CAX to BB: 0.00mm

G=0. B=0. P=0 G=90. B=0. P=0 G=180. B=0. P=0 G=270. B=0. P=0

198 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Perfect Cone

We can also look at simulated cone WL images. Here we use the 17.5mm cone:

import pylinac
from pylinac.core.image_generator import (
GaussianFilterLayer,
FilteredFieldLayer,
AS1200Image,
RandomNoiselayer,
generate_winstonlutz, generate_winstonlutz_cone, FilterFreeConelayer,

wl dir = 'wl dir'
generate_winstonlutz_cone (
AS1200Image (),
FilterFreeConelayer,
dir_out=wl_dir,
final_layers=[GaussianFilterLayer(),],
bb_size_mm=4,
cone_size_mm=17.5,

wl = pylinac.WinstonLutz (wl_dir)
wl.analyze (bb_size_mm=4)
wl.plot_images ()

Gantry images

wl_dir/WL G=270, C=0, P=0;
Cone=17.5mm; BB=4mm @ left=0,
in=0, up=0; Gantry tilt=0,
Gantry sag=0.dcm

wl_dir/WL G=180, C=0, P=0;
Cone=17.5mm; BB=4mm @ left=0,
in=0, up=0; Gantry tilt=0,
Gantry sag=0.dcm

wl_dir/WL G=0, C=0, P=0;
Cone=17.5mm; BB=4mm @ left=0,
in=0, up=0; Gantry tilt=0,
Gantry sag=0.dcm

wl_dir/WL G=90, C=0, P=0;
Cone=17.5mm; m @ left=0,
in=0, up=0; Gantry tilt=0,
Gantry sag=0.dcm

CAX to BB: 0.00mm
CAX to BB: 0.00mm
CAX to BB: 0.00mm
CAX to BB: 0.00mm

G=0. B=0. P=0 G=90. B=0. P=0 G=180. B=0. P=0 G=270. B=0. P=0

5.12.14 API Documentation

class pylinac.winston_lutz.WinstonLutz (directory: Union[str, List[str], pathlib.Path],
use_filenames: ~ bool = False, axis_mapping:
Optional[Dict[str, Tuple[int, int, int]]] = None)
Bases: object
Class for performing a Winston-Lutz test of the radiation isocenter.
Parameters

* directory (str, 1list[str])— Path to the directory of the Winston-Lutz EPID
images or a list of the image paths

* use_filenames (bool)— Whether to try to use the file name to determine axis values.
Useful for Elekta machines that do not include that info in the DICOM data. This is
mutually exclusive to axis_mapping. If True, axis_mapping is ignored.

5.12. Winston-Lutz 199

pylinac Documentation, Release 3.8.2

* axis_mapping (dict) — An optional way of instantiating by passing each file along
with the axis values. Structure should be <filename>: (<gantry>, <coll>, <couch>).

images = None

classmethod from_demo_images ()
Instantiate using the demo images.

classmethod from_zip (zfile: Union[str, BinarylO], use_filenames: bool = False, axis_mapping:
Optional[Dict{str, Tuple[int, int, int]]] = None)
Instantiate from a zip file rather than a directory.

Parameters

e zfile — Path to the archive file.

* use_filenames (bool) — Whether to interpret axis angles using the filenames.
Set to true for Elekta machines where the gantry/coll/couch data is not in the DICOM
metadata.

* axis_mapping (dict) — An optional way of instantiating by passing each file
along with the axis values. Structure should be <filename>: (<gantry>, <coll>,
<couch>).

classmethod from url (url: str, use_filenames: bool = False)
Instantiate from a URL.

Parameters
* url (str)— URL that points to a zip archive of the DICOM images.

* use_filenames (bool) — Whether to interpret axis angles using the filenames.
Set to true for Elekta machines where the gantry/coll/couch data is not in the DICOM
metadata.

static run_demo ()
Run the Winston-Lutz demo, which loads the demo files, prints results, and plots a summary image.

analyze (bb_size_mm: float = 5, machine_scale: pylinac.core.scale.MachineScale = <Machi-
neScale. IEC61217: {’gantry_to_iec’: <function noop>, ’collimator_to_iec’: <function
noop>, ’rotation_to_iec’: <function noop>, 'gantry_from_iec’: <function noop>, ’collima-
tor_from_iec’: <function noop>, ’'rotation_from_iec’: <function noop>}>)
Analyze the WL images.

Parameters

* bb_size_mm — The expected size of the BB in mm. The actual size of the BB can
be +/-2mm from the passed value.

* machine_scale - The scale of the machine. Shift vectors depend on this value.

gantry_ iso_size
The diameter of the 3D gantry isocenter size in mm. Only images where the collimator and couch were

at 0 are used to determine this value.

gantry coll_iso_size
The diameter of the 3D gantry isocenter size in mm including collimator and gantry/coll combo images.
Images where the couch!=0 are excluded.

collimator_iso_size
The 2D collimator isocenter size (diameter) in mm. The iso size is in the plane normal to the gantry.

200 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

couch_iso_size
The diameter of the 2D couch isocenter size in mm. Only images where the gantry and collimator were
at zero are used to determine this value.

bb_shift_vector
The shift necessary to place the BB at the radiation isocenter. The values are in the coordinates defined in
the documentation.

The shift is based on the paper by Low et al. See online documentation for more.

bb_shift_instructions (couch_vrt: Optional[float] = None, couch_Ing: Optional[float] = None,

couch_lat: Optional[float] = None) — str
Returns a string describing how to shift the BB to the radiation isocenter looking from the foot of the

couch. Optionally, the current couch values can be passed in to get the new couch values. If passing the
current couch position all values must be passed.

Parameters
e couch_vrt (float) - The current couch vertical position in cm.
* couch_lng (float)- The current couch longitudinal position in cm.
* couch_lat (float)— The current couch lateral position in cm.

axis_rms_deviation (axis: Union[pylinac.winston_lutz.Axis, Tuple[pylinac.winston_lutz.Axis,
...]] = <Axis.GANTRY: ’Gantry’>, value: str = ’all’) — Union[lterable,

float]
The RMS deviations of a given axis/axes.

Parameters

* axis (('Gantry', 'Collimator', 'Couch', 'Epid', 'GB
Combo', 'GBP Combo ")) - The axis desired.

e value ({'all', 'range'})— Whether to return all the RMS values from all
images for that axis, or only return the maximum range of values, i.e. the ‘sag’.

cax2bb_distance (metric: str = 'max’) — float
The distance in mm between the CAX and BB for all images according to the given metric.

Parameters metric ({ 'max', 'median', 'mean'})- The metric of distance to use.

cax2epid_distance (metric: str = ‘'max’) — float
The distance in mm between the CAX and EPID center pixel for all images according to the given metric.

Parameters metric ({ 'max', 'median', 'mean'})- The metric of distance to use.

plot_axis_images (axis: pylinac.winston_lutz.Axis = <Axis. GANTRY: ’Gantry’>, show: bool =

True, ax: Optional[matplotlib.axes._axes.Axes] = None)
Plot all CAX/BB/EPID positions for the images of a given axis.

For example, axis="Couch’ plots a reference image, and all the BB points of the other images where the
couch was moving.

Parameters

e axis ({'Gantry', 'Collimator', 'Couch', 'GB Combo', 'GBP
Combo ' }) — The images/markers from which accelerator axis to plot.

* show (bool)— Whether to actually show the images.

* ax (None, matplotlib.Axes) — The axis to plot to. If None, creates a new
plot.

5.12. Winston-Lutz 201

pylinac Documentation, Release 3.8.2

plot_images (axis: Axis = <Axis. GANTRY: ’Gantry’>, show: bool = True, split: bool = False,
**kwargs) -> (List[plt.Figure], List[str])
Plot a grid of all the images acquired.

Four columns are plotted with the titles showing which axis that column represents.
Parameters

e axis ({'Gantry', 'Collimator', 'Couch', 'GB Combo', 'GBP
Combo', 'All'})-

* show (bool) — Whether to show the image.
e split (bool)— Whether to show/plot the images individually or as one large figure.

save_images (filename: Union[str, BinarylO], axis: pylinac.winston_lutz.Axis = <Axis. GANTRY:

‘Gantry’>, **kwargs)
Save the figure of plot_images() to file. Keyword arguments are passed to matplotlib.pyplot.savefig().

Parameters
e filename (str)— The name of the file to save to.
¢ axis — The axis to save.

save_images_to_stream (**kwargs) — Dict[str, _io.BytesIO]
Save the individual image plots to stream

plot_summary (show: bool = True, fig_size: Optional[tuple] = None)
Plot a summary figure showing the gantry sag and wobble plots of the three axes.

save_summary (filename: Union[str, BinarylO], **kwargs)
Save the summary image.

results (as_list: bool = False) — str
Return the analysis results summary.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

results_data (as_dict=False) — Union[pylinac.winston_lutz.WinstonLutzResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

publish_pdf (filename: str, notes: Union[str, List[str], None] = None, open_file: bool = False, meta-
data: Optional[dict] = None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.
Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ———— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

202 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Bases: pylinac.core.utilities.ResultBase

class pylinac.winston_lutz.WinstonLutzResult (num_gantry_images:

num_gantry_coll_images:

int,
int,

num_coll_images: int, num_couch_images:

int, num_total_images:
max_2d_cax_to_bb_mm: float,
dian_2d_cax_to_bb_mm:
mean_2d_cax_to_bb_mm:
max_2d_cax_to_epid_mm: Sfloat,

dian_2d_cax_to_epid_mm:
mean_2d_cax_to_epid_mm:
gantry_3d_iso_diameter_mm:
max_gantry_rms_deviation_mm.
max_epid_rms_deviation_mm:
gantry_coll_3d_iso_diameter_mm:

float,

int,
me-
float,
float,
me-
float,
float,
float,
float,

float,

coll_2d iso_diameter_mm.:

float, max_coll_rms_deviation_mm:
float, couch_2d_iso_diameter_mm:
float, max_couch_rms_deviation_mm.:
float, image_details:

List[pylinac.winston_lutz. WinstonLutz2DResult])

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under

the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

num_gantry_images = None
num_gantry_coll_images = None
num_coll_ images = None
num_couch_images = None
num_total_images = None
max_2d_cax_to_bb_mm = None
median_2d _cax to_bb_mm = None
mean_2d cax to_bb mm = None
max_2d_cax_to_epid mm = None
median_2d cax to_epid mm = None
mean_2d_cax_to_epid _mm = None
gantry 3d_iso_diameter_mm = None
max_gantry_ rms_deviation_mm = None
max_epid rms_deviation mm = None
gantry coll_3d_iso_diameter_mm = None
coll 2d iso_diameter_ mm = None
max_coll rms_deviation _mm = None
couch_2d _iso_diameter_mm = None
max_couch_rms_deviation mm = None

5.12. Winston-Lutz

203

pylinac Documentation, Release 3.8.2

image_details = None

class pylinac.winston_lutz.WinstonLutz2D (file: Union[str, BinarylO, pathlib.Path],

use_filenames: bool = False, **kwargs)
Bases: pylinac.core.image.LinacDicomImage

Holds individual Winston-Lutz EPID images, image properties, and automatically finds the field CAX and BB.
Parameters
e file (str) - Path to the image file.

* use_filenames (bool)— Whether to try to use the file name to determine axis values.
Useful for Elekta machines that do not include that info in the DICOM data.

analyze (bb_size_mm: float = 5) — None
Analyze the image.

epid
Center of the EPID panel

cax_line projection
The projection of the field CAX through space around the area of the BB. Used for determining gantry
isocenter size.

Returns The virtual line in space made by the beam CAX.
Return type Line

cax2bb_vector
The vector in mm from the CAX to the BB.

cax2bb_distance
The scalar distance in mm from the CAX to the BB.

cax2epid_vector
The vector in mm from the CAX to the EPID center pixel

cax2epid_distance
The scalar distance in mm from the CAX to the EPID center pixel

plot (ax: Optional[matplotlib.axes._axes.Axes] = None, show: bool = True, clear_fig: bool = False)
Plot the image, zoomed-in on the radiation field, along with the detected BB location and field CAX
location.

Parameters

* ax (None, matplotlib Axes instance)— The axis to plotto. If None, will
create a new figure.

* show (bool) — Whether to actually show the image.
* clear_fig (bool)— Whether to clear the figure first before drawing.

save_plot (filename: str, **kwargs)
Save the image plot to file.

variable_ axis
The axis that is varying.

There are five types of images:
» Reference : All axes are at 0.
* Gantry: All axes but gantry at 0.

¢ Collimator : All axes but collimator at 0.

204 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

¢ Couch : All axes but couch at 0.
¢ Combo : More than one axis is not at 0.

results_data (as_dict=False) — Union[pylinac.winston_lutz.WinstonLutz2DResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

class pylinac.winston_lutz.WinstonLutz2DResult (variable_axis: ’str’, cax2epid_vector:
"Vector’, cax2epid_distance:
float’, cax2bb_distance: float’,
cax2bb_vector: ’Vector’, bb_location:

"Point’, field_cax: ’Point’)
Bases: pylinac.core.utilities.ResultBase

variable_axis = None
cax2epid_vector = None
cax2epid_distance = None
cax2bb_distance = None
cax2bb_vector = None

bb location = None

field cax = None

5.13 Planar Imaging

5.13.1 Overview
The planar imaging module analyzes phantom images taken with the kV or MV imager in 2D. The following phantoms
are supported:
* Leeds TOR 18
 Standard Imaging QC-3
 Standard Imaging QC-kV
* Las Vegas
* Doselab MC2 MV
* Doselab MC2 kV
* SNCkV
* SNCMV
* PTW EPID QC
Features:

¢ Automatic phantom localization - Set up your phantom any way you like; automatic positioning, angle, and
inversion correction mean you can set up how you like, nor will setup variations give you headache.

* High and low contrast determination - Analyze both low and high contrast ROIs. Set thresholds as you see
fit.

5.13. Planar Imaging 205

pylinac Documentation, Release 3.8.2

5.13.2 Feature table

Feature/Phantom Can be inverted? | SSD setting | Auto-centering | Auto-rotation

Doselab MC2 (MV) | No Manual Yes Semi (+/-5 from 0)
Doselab MC2 (kV) No Manual Yes Semi (+/-5 from 0)

Las Vegas L/R Manual Yes No (0)

Leeds TOR Yes Manual Yes Yes

PTW EPID QC No Manual Yes No (0)

SNC MV No Manual Yes No (45)

SNC MV (12510) No Manual Yes No (45)

SNC kV No Manual Yes No (135)

SIQC-3 (MV) No Manual Yes Semi (+/-5 from 45/135)
SIQCkV No Manual Yes Semi (+/-5 from 45/135)
IBA Primus A No Manual Yes (+/-2cm) Semi (+/-5 from 0,90,270)

5.13.3 Typical module usage

The following snippets can be used with any of the phantoms in this module; they all have the same or very similar
methods. We will use the LeedsTOR for the example, but plug in any phantom from this module.

Running the Demo

To run the demo of any phantom, create a script or start an interpreter session and input:

from pylinac import LeedsTOR # or LasVegas, DoselabMCZ2kV, etc

LeedsTOR. run_demo ()

A figure showing the phantom, low contrast plot, and RMTF will be generated:

Typical Use

Import the class:

from pylinac import LeedsTOR # or whatever phantom you like from the planar imaging,
—module

The minimum needed to get going is to:

* Load image — Load the planar image as you would any other class: by passing the path directly to the construc-
tor:

’leeds = LeedsTOR('my/leeds.dcm')

Alternatively, a URL can be passed:

’leeds = LeedsTOR.from_url ('http://myserver.com/leeds')

You may also use the demo image:

’leeds = LeedsTOR. from_demo_image ()

206 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Low-frequency Contrast High-frequency rMT
0.40 4 Contrast 1.0 4
CNR 40
0.35 A 0.9
_ 0.30 -
2ds Phantom Analysis - 30 084
L
u & 0.25 E
o x g
cHi < 0.20 & 207-
S 20 ©
g
0.15
0.6 A
0.10 A L 10
0.5
0.05 \
000 i T T 0 04 e T T
0 10 05 1.0 15
ROI # Line pairs / mm

5.13. Planar Imaging 207

pylinac Documentation, Release 3.8.2

* Analyze the images — Analyze the image using the analyze () method. The low and high contrast thresholds
can be specified:

leeds.analyze (low_contrast_threshold=0.01, high_contrast_threshold=0.5)

Additionally, you may specify the SSD of the phantom if it is not at iso (e.g. sitting on the panel):

leeds.analyze (..., ssd=1400)

* View the results — The results of analysis can be viewed with the plot_analyzed image () method.

leeds.plot_analyzed_image ()

Low-frequency Contrast High-frequency rMT
0.40 4 Contrast 1.0 A
CNR 40
0.35 0.9
_ 0.30
2ds Phantom Analysis - 30 08
L
u 2 0.25 E
o x o
-Hi £ 0.20 - S 20.7-
g - 20 ©
g
0.15
0.6
0.10 ~ L 10
0.5
0.05
0.00 4 i 0 0.4 + . .
0 10 05 1.0 1.5
ROI # Line pairs / mm

Note that each subimage can be turned on or off.

don't show the low contrast plot
leeds.plot_analyzed_image (low_contrast=False)

The figure can also be saved:

leeds.save_analyzed_image ('myprofile.png')

A PDF report can also be generated:

208 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

leeds.publish_pdf ('leeds_octoberl6.pdf'")

5.13.4 Leeds TOR Phantom

The Leeds phantom is used to measure image quality metrics for the kV imager of a linac. It contains both high and
low contrast ROIs.

Note: There are two phantom analysis routines. The Leeds TOR class is for newer phantoms that have a red ring on
the outside. Older Leeds phantoms may have a blue label containing the serial number and model on the back. Use
the LeedsTORBI1ue class for these phantoms. The difference is small ROI location shifts.

Image Acquisition

You can acquire the images any way you like. Just ensure that the phantom is not touching a field edge. It is also
recommended by the manufacturer to rotate the phantom to a non-cardinal angle so that pixel aliasing does not occur
for the high-contrast line pairs.

Algorithm
Leeds phantom analysis is straightforward: find the phantom in the image, then sample ROIs at the appropriate loca-
tions.
The algorithm works like such:
Allowances
* The images can be acquired at any SID.
* The images can be acquired with any size kV imager.
* The phantom can be at any distance.
e The phantom can be at any angle.
* The phantom can be flipped either way.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must not be touching or close to any image edges.

e The blades should be fully or mostly open to correctly invert the image. This may not result in a
complete failure, but you may have to force-invert the analysis if this case isn’t true (i.e. myleeds.
analyze (invert=True)).

* The phantom should be centered near the CAX (<1-2cm).
Pre-Analysis

* Determine phantom location — The Leeds phantom is found by performing a Canny edge detection algorithm
to the image. The thin structures found are sifted by finding appropriately-sized ROIs. This may include the
outer phantom edge and the metal ring just inside. The average central position of the circular ROIs is set as the
phantom center.

5.13. Planar Imaging 209

pylinac Documentation, Release 3.8.2

* Determine phantom angle — To find the rotational angle of the phantom, a similar process is employed, but
square-like features are searched for in the edge detection image. Because there are two square areas, the ROI
with the highest attenuation (lead) is chosen. The angle between the phantom center and the lead square center
is set as the angle.

* Determine rotation direction — The phantom might be placed upside down. To keep analysis consistent, a
circular profile is sampled at the radius of the low contrast ROIs starting at the lead square. Peaks are searched
for on each semicircle. The side with the most peaks is the side with the higher contrast ROIs. Analysis is always
done counter-clockwise. If the ROIs happen to be clockwise, the image is flipped left-right and angle/center
inverted.

Analysis

* Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

 Calculate high contrast — Again, because the phantom position and angle are known, offsets are applied to
sample the high contrast line pair regions. For each sample, the relative MTF is calculated. See Modulation
Transfer Function (MTF).

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

Troubleshooting
If you’re having trouble getting the Leeds phantom analysis to work, first check out the Troubleshooting section. If
the issue is not listed there, then it may be one of the issues below.

The most common reason for failing is having the phantom near an image edge. The resulting error is usually that the
phantom angle cannot be determined. For example, this image would throw an error:

210 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

=
===
_

The below image also fails. Technically, the phantom is in the image, but the top blade skews the pixel values such
that the phantom edge cannot be properly found at the top. This fails to identify the true phantom edge, causing the
angle to also not be found:

5.13. Planar Imaging 211

pylinac Documentation, Release 3.8.2

— | —
——— —
— Jr—
—_— e

—

.

B =
== ===

Another problem is that the image may have a non-uniform background. This can cause pylinac’s automatic inversion
correction to incorrectly invert the image. For example, this image falsely inverts:

212 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

I
(11
1

When analyzed, the angle is 180 degrees opposite the lead square, causing the ROIs to be flipped 180 degrees. To
correct this problem, pass invert=True to analyze (). This will force pylinac to invert the image the opposite
way and correctly identify the lead square.

Another common problem is an offset analysis, as shown below:

5.13. Planar Imaging 213

pylinac Documentation, Release 3.8.2

Leeds Phantom Analysis

This is caused by a wrong inversion.

Note: If the image flash is dark, then the image inversion is very likely wrong.

Again, pass invert=True to the analyze method. This is the same image but with invert=True:

214 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Leeds Phantom Analysis

5.13.5 PTW EPID QC Phantom

The PTW EPID QC phantom is an MV imaging quality assurance phantom and has high and low contrast regions, just
as the Leeds phantom, but with different geometric configurations.

Image Acquisition

The EPID QC phantom appears to have a specific setup as recommended by the manufacturer. The phantom should
have the high-contrast line pairs at the top of the image and low contrast at the bottom. The rotation is not automatically
determined, so you should take care when setting up the phantom to be well-positioned.

Algorithm

The algorithm works like such:
Allowances
» The images can be acquired at any SID.

* The images can be acquired with any EPID.

5.13. Planar Imaging 215

pylinac Documentation, Release 3.8.2

* The images can be acquired with the phantom at any SSD.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must be at O degrees.
* The phantom must not be touching any image edges.
* The phantom should have the high-contrast linen pair regions toward the gantry stand/top.
* The phantom should be centered near the CAX (<1-2cm).
Pre-Analysis

* Determine phantom location — A Canny edge search is performed on the image. Connected edges that are
semi-round and angled are thought to possibly be the phantom. Of the ROIs, the one with the longest axis is
said to be the phantom edge. The center of the bounding box of the ROI is set as the phantom center.

¢ Determine phantom radius — The major axis length of the ROI determined above serves as the phantom radius.
Analysis

* Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

 Calculate high contrast — Again, because the phantom position and angle are known, offsets are applied to
sample the high contrast line pair regions. For each sample, the relative MTF is calculated. See Modulation
Transfer Function (MTF).

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

5.13.6 Standard Imaging QC-3 Phantom

The Standard Imaging phantom is an MV imaging quality assurance phantom and has high and low contrast regions,
just as the Leeds phantom, but with different geometric configurations.

Image Acquisition

The Standard Imaging phantom has a specific setup as recommended by the manufacturer. The phantom should be
angled 45 degrees, with the “1” pointed toward the gantry stand and centered along the CAX. For best results when
using pylinac, open the jaws to fully cover the EPID, or at least give 1-2cm flash around the phantom edges.

Warning: If using the acrylic jig that comes with the phantom, place a spacer of at least a few mm between the
jig and the phantom. E.g. a slice of foam on each angled edge. This is because the edge detection of the phantom
may fail at certain energies with the phantom abutted to the acrylic jig.

Algorithm

The algorithm works like such:

Allowances

216 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* The images can be acquired at any SID.
* The images can be acquired with any EPID.
* The images can be acquired with the phantom at any SSD.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must be at 45 degrees.

* The phantom must not be touching any image edges.

* The phantom should have the “1” pointing toward the gantry stand.

* The phantom should be centered near the CAX (<1-2cm).
Pre-Analysis

¢ Determine phantom location — A Canny edge search is performed on the image. Connected edges that are
semi-round and angled are thought to possibly be the phantom. Of the ROIs, the one with the longest axis is
said to be the phantom edge. The center of the bounding box of the ROI is set as the phantom center.

* Determine phantom radius and angle — The major axis length of the ROI determined above serves as the
phantom radius. The orientation of the edge ROI serves as the phantom angle.

Analysis

* Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

¢ Calculate high contrast — Again, because the phantom position and angle are known, offsets are applied to
sample the high contrast line pair regions. For each sample, the relative MTF is calculated. See Modulation
Transfer Function (MTF).

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

Troubleshooting

If you’re having issues with the StandardImaging class, make sure you have correctly positioned the phantom as per
the manufacturer’s instructions (also see /mage Acquisition). One issue that may arise is incorrect inversion. If the
jaws are closed tightly around the phantom, the automatic inversion correction may falsely invert the image, just as for

the Leeds phantom. If you have an image that looks inverted or just plain weird, add invert=Trueto analyze ().
If this doesn’t help, reshoot the phantom with the jaws open.

5.13.7 Las Vegas Phantom

The Las Vegas phantom is for MV image quality testing and includes low contrast regions of varying contrast and size.

Image Acquisition

The Las Vegas phantom has a recommended position as stated on the phantom. Pylinac will however account for
angles, shifts, and inversions. Best practices for the Las Vegas phantom:

5.13. Planar Imaging 217

pylinac Documentation, Release 3.8.2

* Keep the phantom from a couch edge or any rails.

Algorithm

The algorithm works like such:
Allowances
» The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must not be touching any image edges.
* The phantom should be at a cardinal angle (0, 90, 180, or 270 degrees) relative to the EPID.
* The phantom should be centered near the CAX (<1-2cm).

Pre-Analysis

* Determine phantom location — A Canny edge search is performed on the image. Connected edges that are
semi-round and angled are thought to possibly be the phantom. Of the ROIs, the one with the longest axis is
said to be the phantom edge. The center of the bounding box of the ROI is set as the phantom center.

* Determine phantom radius and angle — The major axis length of the ROI determined above serves as the
phantom radius. The orientation of the edge ROI serves as the phantom angle.

Analysis

 Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

5.13.8 Doselab MC2 MV & kV

The Doselab MC2 phantom is for both kV & MV image quality testing and includes low and high contrast regions of
varying contrast. There are two high contrast sections, one intended for kV and one for MV.

Image Acquisition
The Doselab phantom has a recommended position as stated on the phantom. Pylinac will however account for shifts
and inversions. Best practices for the Doselab phantom:

» Keep the phantom away from a couch edge or any rails.

* Center the phantom along the CAX.

218 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Algorithm

The algorithm works like such:
Allowances
* The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must not be touching any image edges.

* The phantom should be at 45 degrees relative to the EPID.

* The phantom should be centered near the CAX (<1-2cm).
Pre-Analysis

* Determine phantom location — A canny edge search is performed on the image. Connected edges that are
semi-round and angled are thought to possibly be the phantom. Of the ROIs, the one with the longest axis is
said to be the phantom edge. The center of the bounding box of the ROI is set as the phantom center.

* Determine phantom radius and angle — The major axis length of the ROI determined above serves as the
phantom radius. The orientation of the edge ROI serves as the phantom angle.

Analysis

¢ Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

5.13.9 SNC MV & kV

The SNC MV and kV phantoms are for kV & MV image quality testing and includes low and high contrast regions of
varying contrast.

Image Acquisition

The SNC phantoms typically use the angled setup jig. Best practices for the Doselab phantom:
* Keep the phantom away from a couch edge or any rails.
* Center the phantom along the CAX.
» Use the angled setup jig.
* For the MV phantom, have the longer side point inferiorly (i.e. away from the stand).

* For the kV phantom, have the longer side point superiorly (i.e. toward the stand).

5.13. Planar Imaging 219

pylinac Documentation, Release 3.8.2

Algorithm

The algorithm works like such:
Allowances
* The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must not be touching any image edges.

* The phantom should be at 45 degrees relative to the EPID.

* The phantom should be centered near the CAX (<1-2cm).
Pre-Analysis

* Determine phantom location — A canny edge search is performed on the image. Connected edges that are
semi-round and angled are thought to possibly be the phantom. Of the ROIs, the one with the longest axis is
said to be the phantom edge. The center of the bounding box of the ROI is set as the phantom center.

e Determine phantom radius — The major axis length of the ROI determined above serves as the phantom radius.
Analysis

 Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

5.13.10 IBA Primus A

The IBA Primus A phantom is used for kV image analysis and includes low and high contrast regions of varying
contrast.

Image Acquisition

Lay the phantom on the couch with the wedge step circle facing the top/gun and high-res square facing the bot-
tom/target.

Algorithm

The algorithm works like such:
Allowances
* The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

220 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom must not be touching any image edges.
* The phantom should be at 0, 90, or 270 +/-5 degrees relative to the EPID where 0 is facing the gun.

* The dynamic wedge steps should be facing the gun side; the high-resolution square should be facing the target
side.

* The phantom should be centered near the CAX (<2cm).
Pre-Analysis

¢ Determine phantom location — A Canny edge search is performed on the image. The ROI that approximates
the size of the central crosshair of the phantom and is nearly at the center of the image is used as the phantom
center location

* Determine phantom radius — The size of the above crosshair ROI is used as the basis for the phantom radius.

* Fine-tune phantom angle — The phantom angle is assumed to be around 0 (wedge steps facing gun), but fine-
tuning is performed so that sensitive ROIs like MTF can be had with high accuracy. This is performed by taking
a circular profile about the phantom at the radius of the wedge steps. The two areas of highest gradient will
be at the first and last wedge steps. The center between these two points is the angle at which the phantom is
“pointing” and will be used as the updated angle.

Warning: If the gradients cannot be found or if the determined angle is >5 degrees (caused by bad inversion,
e.g.) a warning will be printed to the console and a default of 0 will be used.

Analysis

* Calculate low contrast — Because the phantom center and angle are known, the angles to the ROIs can also be
known. From here, the contrast can be known; see Contrast.

¢ Calculate high contrast — Again, because the phantom position and angle are known, offsets are applied to
sample the high contrast line pair regions. For each sample, the relative MTF is calculated. See Modulation
Transfer Function (MTF).

Post-Analysis

* Determine passing low and high contrast ROIs — For each low and high contrast region, the determined value
is compared to the threshold. The plot colors correspond to the pass/fail status.

5.13.11 Standard Imaging FC-2

The FC-2 phantom is for testing light/radiation coincidence.

Image Acquisition

The FC-2 phantom should be placed on the couch at 100cm SSD.

* Keep the phantom away from a couch edge or any rails.

5.13. Planar Imaging 221

pylinac Documentation, Release 3.8.2

Algorithm

The algorithm works like such:
Allowances
* The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom should be at a cardinal angle (0, 90, 180, or 270 degrees) relative to the EPID.
 The phantom should be centered near the CAX (<Icm).
* The phantom should be +/- 1cm from 100cm SSD.

Pre-Analysis

* Determine BB set to use — There are two sets of BBs, one for 10x10cm and another for 15x15cm. To get the
maximum accuracy, the larger set is used if a 15x15cm field is irradiated. The field size is determined and if it’s
>14cm then the algorithm will look for the larger set. Otherwise, it will look for the smaller 4.

Analysis

* Get BB centroid — Once the BB set is chosen, image windows look for the BBs in a 1x1cm square. Once it
finds them, the centroid of all 4 BBs is calculated.

¢ Determine field center — The field size is measured along the center of the image in the inplane and crossplane
direction. A Smm strip is averaged and used to reduce noise.

Post-Analysis

* Comparing centroids — The irradiated field centroid is compared to the EPID/image center as well as the the
BB centroid. The field size is also reported.

Customizing behavior

The BB window as well as the expected BB positions, and field strip size can be overridden like so:

from pylinac import StandardImagingFC2

class MySIFC2 (StandardImagingFC2) :

bb_sampling box_size_mm = 20 # look at a 20x20mm window for the BB at the_,
—expected position

change the 10x10 BB expected positions. This is in mm relative to the CAX.

bb_positions_10x10 = {'TL': [-30, -30], 'BL': [-30, 30], 'TR': [30, -30], 'BR':|
—[30, 3071}
bb_positions_15x15 = ... # same as above

field _strip_width_mm = 10 # I10mm strip in x and y to determine field size

use as normal
fc2 = MySIFC2(...)

222 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.13.12 IMT L-Rad

New in version 3.2.

The IMT L-Rad phantom is for testing light/radiation coincidence. Unlike the FC-2 phantom, the L-Rad’s BBs are all
the way at the edge of the phantom. This means for any size below 20x20cm those BBs can’t be seen. Even at 20x20,
the field edge partially obscures the BBs. For this reason, we only use the central BB for detection.

Image Acquisition

The L-Rad phantom should be placed on the couch at 100cm SSD.

* Keep the phantom away from a couch edge or any rails.

Algorithm

The algorithm works like such:
Allowances
* The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom should be at a cardinal angle (0, 90, 180, or 270 degrees) relative to the EPID.
* The phantom should be centered near the CAX (<3mm).
Analysis

* Get BB centroid — An image window looks for the central BB in a 1.2x1.2cm square. Once it finds it, the
centroid is calculated.

¢ Determine field center — The field size is measured along the center of the image in the inplane and crossplane
direction. A Smm strip is averaged and used to reduce noise.

Post-Analysis

* Comparing centroids — The irradiated field centroid is compared to the EPID/image center as well as the the
BB centroid. The field size is also reported.

5.13.13 SNC FSQA

New in version 3.3.

The SNC FSQA phantom is for light/radiation coincidence. It contains markers which guide the physicist on how to
position the light field for either a 10x10 or 15x15cm field. There is also an offset BB 4cm at the top right of the image.
Because of both /e philosophy of pylinac on light/rad and also because pylinac is a library and not a GUI, there is no
interaction to find the edge markers. Instead, we use the one offset BB and then offset that point back 4cm in each
direction to get a “virtual center”. This center is compared to the field center and EPID center. The expectation is that
the physicist set up their field to the markers using the light field at the time of acquisition.

5.13. Planar Imaging 223

pylinac Documentation, Release 3.8.2

Image Acquisition

The FSQA phantom should be placed on the couch at 100cm SSD.
* Keep the phantom away from a couch edge or any rails.

» Keep the phantom as close to 0 degrees rotation as possible.

Algorithm

The algorithm works like such:
Allowances
» The images can be acquired at any SID.
* The images can be acquired with any EPID.

Restrictions

Warning: Analysis can fail or give unreliable results if any Restriction is violated.

* The phantom should be at 0 degrees relative to the EPID.
* The phantom should be roughly centered along the CAX (<3mm).
Analysis

* Get BB centroid — An image window looks for the top-right offset BB in a 1.2x1.2cm square. Once it finds it,
a “virtual center” centroid is calculated by shifting the detected BB location by 4cm in each direction.

¢ Determine field center — The field size is measured along the center of the image in the inplane and crossplane
direction. A Smm strip is averaged and used to reduce noise.

Post-Analysis

* Comparing centroids — The irradiated field centroid is compared to the EPID/image center as well as the the
BB centroid. The field size is also reported.

5.13.14 Creating a custom phantom

In the event you would like to analyze a phantom that pylinac does not analyze out of the box, the pylinac planar
imaging module structure allows for generating new phantom analysis types quickly and easily. The benefit of this
design is that with a few simple definitions you inherit a strong base of methods (e.g. plotting and PDF reports come
for free).

Creating a new class involves a few different steps but can be done in a few minutes. The following is a guide for
custom phantoms:

1. Subclass the ImagePhantomBase class:

from pylinac.planar_ imaging import ImagePhantomBase

class CustomPhantom (ImagePhantomBase) :
pass

2. Define the common_name. This is the name shown in plots and PDF reports.

224 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class CustomPhantom (ImagePhantomBase) :
common_name = 'Custom Phantom v2.0'

3. If the phantom has a high-contrast measurement object, define the ROI locations.

class CustomPhantom (ImagePhantomBase) :

high_contrast_roi_settings = {
'roi 1': {'distance from center': 0.5, 'angle': 30, 'roi radius
—': 0.05, '"lp/mm': 0.2},
add as many ROIs as are needed

Note: The exact values of your ROIs will need to be empirically determined. This usually involves
an iterative process of adjusting the values until the values are satisfactory based on the ROI sample
alignment to the actual ROIs.

4. If the phantom has a low-contrast measurement object, define the sample ROI and background ROI locations.

class CustomPhantom (ImagePhantomBase) :

low_contrast_roi_settings = {
'roi 1': {'distance from center': 0.5, 'angle': 30, 'roi radius
—': 0.05}, # no Ip/mm key
add as many ROIs as are needed

}

low_contrast_background_roi_settings = {
'roi 1': {'distance from center': 0.3, 'angle': -45, 'roi radius
—': 0.02},

add as many ROIs as are needed

Note: The exact values of your ROIs will need to be empirically determined. This usually involves
an iterative process of adjusting the values until the values are satisfactory based on the ROI sample
alignment to the actual ROIs.

5. Set the “detection conditions”, which is the list of rules that must be true to properly detect the phantom ROIL.
E.g. the phantom should be near the center of the image. Detection conditions must always have a specific

signature as shown below:

def my_special_detection_condition(region: RegionProperties, instance:
—object, rtol: float) —-> bool:

region is a scikit regionprop (https://scikit-image.org/docs/dev/
—api/skimage.measure.html#skimage.measure.regionprops)

instance == self of the phantom

rtol is relative tolerance of agreement. Don't have to use this.

do_stuff # e.g. is the region size and position correct?

return bool (result) # must always return a boolean

class CustomPhantom (ImagePhantomBase) :
detection_conditions = [my_special_detection_condition,] # list of_,

—conditions; add as many as you want.

5.13. Planar Imaging 225

pylinac Documentation, Release 3.8.2

6. Optionally, add a phantom outline object. This helps visualize the algorithm’s determination of the size, center,
and angle. If no object is defined, then no outline will be shown. This step is optional.

class CustomPhantom (ImagePhantomBase) :

phantom_outline_object = {'Circle': {'radius ratio': 0.5}} # to

—create a circular outline

or...

phantom_outline_object = {'Rectangle': {'width ratio': 0.5, 'height
—ratio': 0.3}} # to create a rectangular outline

At this point you could technically call it done. You would need to always override the angle, center, and size values in
the analyze method however. To automate this part you will need to fill in the associated logic. You can use whatever
method you like. What I have found most useful is to use an edge detection algorithm and find the outline of the
phantom.

class CustomPhantom (ImagePhantomBase) :

def _phantom_center_calc(self) -> Point:
do stuff in here to determine the center point location.
don't forget to return as a Point item (pylinac.core.geometry.
—Point).

def _phantom_radius_calc(self) -> float:
do stuff in here to return a float that represents the phantom_
—radius value.
This value does not have to relate to a physical measure. It_
—simply defines a value that the ROIs scale by.

def _phantom_angle_calc(self) -> float:
do stuff in here to return a float that represents the angle of_
—the phantom.
Again, this value does not have to correspond to reality; it_,
—simply offsets the ROIs.
You may also return a constant if you like for any of these.

Congratulations! You now have a fully-functioning custom phantom. By using the base class and the predefined
attributes and methods, the plotting and PDF report functionality comes for free.

5.13.15 Usage tips, tweaks, & troubleshooting

Set the SSD of your phantom

If your phantom is at a non-standard distance (!= 1000mm), e.g. sitting on the EPID panel, you can specify its distance
via the ssd parameter.

Warning: The ssd should be in mm, not cm. Pylinac is moving toward consistent units on everything and it will
be mm for distance.

from pylinac import StandardImagingQC3

gc = StandardImagingQC3(...)
gc.analyze(..., ssd=1500) # distance to the phantom in mm.

226 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Adjust an ROI on an existing phantom

To adjust an ROI, override the relevant attribute or create a subclass. E.g. to move the 2nd ROI of the high-contrast
ROI set of the QC-3 phantom:

from pylinac import StandardImagingQC3

StandardImagingQC3.high_contrast_roi_settings['roi 1']['distance from center'] = 0.05_
— # overrides that one setting
gc3 = StandardImagingQC3(...)

or
class TweakedStandardImagingQC3 (StandardImagingQC3) :
high_contrast_roi_settings = {
'roi 1':

} # note that you must replace ALL the values

qgc3 = TweakedStandardImagingQC3(...)

Calculate a specific MTF

To calculate a specific MTF value, i.e. the frequency at a given MTF%:

dl = DoselabMC2kV (...)
dl.analyze(...)
print (dl.mtf.relative_resolution (x=50)) # 50% rMTF

Get/View the contrast of a low-contrast ROI

leeds = LeedsTOR(...)
leeds.analyze (.. .)
print (leeds.low_contrast_rois[l].contrast) # get the 2nd ROI contrast value

Loosen the ROI finding conditions

If for some reason you have a need to loosen the existing phantom-finding algorithm conditions you can do so fairly
easily by overloading the current tooling:

from pylinac.planar_imaging import is_right_size, is_centered, LeedsTOR

def is_right_size_loose(region, instance, rtol=0.3): # rtol default is 0.1
return is_right_size(region, instance, rtol)

set the new condition for whatever
LeedsTOR.detection_conditions = [is_right_size_loose, is_centered]
proceed as normal

myleeds = LeedsTOR(...)

5.13. Planar Imaging 227

pylinac Documentation, Release 3.8.2

5.13.16 Wrong phantom angle

It may sometimes be that the angle of the phantom appears incorrect, or the results appear incorrect. E.g. here is a
QC-3 phantom:

Low-frequency Contrast High-frequency rMTF
—8— Contrast
—— Visual CNR 12 4,
0.35 A g
rLl
S| QC-3 Phantom Analysis 0.30 - 1.0+
F1.0
0.25 - L 091
=
B F0.9 =
& 2
= 0.8
g 0201 & 0
ro8’'s
J 0.7 1
0.15 Loy
0.10 L o6 0.6 1
0.05 05 05 .
i i i T T T T T
0 1 2 3 4 0.2 0.4 0.6
ROI # Line pairs / mm

The ROIs appear correct, the but the contrast and MTF do not monotonically decrease, indicating a problem. In this
case, it is because the image acquisition rules were not followed. For the QC-3, the “1” should always point toward
the gantry, as per the manual. When oriented this way, the results will be correct.

5.13.17 Light/Radiation philosophy

Pylinac (or rather the author) has an opinionated philosophy about light vs radiation that affects the way light/radiation
analysis is performed. In our opinion, light/rad using a phantom is antiquated as EPIDs are robust enough nowadays
to be quite reliable, at least for Varian machines. By using something as simple as graph paper after mechanical
measurements, a light field can be set and a simple open field delivered. This open field size and CAX offset can be
compared to the nominal values set by the physicist at the time of acquisition.

Short of using CCD cameras or specialty equipment like phosphorus, there is no true way to know the light field
measurement. All we have is what the physicist set up to. If the physicist sets up to a nominal size like 10x10, then
a radiation field measurement can be compared to that rather simply with common field analysis. E.g if the measured
field size was 10.1x10.6mm then the error between light and rad is 0.1 and 0.6mm respectively. The CAX offset
follows the same logic.

You may disagree, but this is here for the purposes of explaining our philosophy and why light/rad does (or does not
do) what it does.

We provide these light/rad routines because customers ask for them, not because we recommend them.

5.13.18 API Documentation

class pylinac.planar_imaging.LeedsTOR (filepath: Union/[str, BinarylO, pathlib.Path], normal-
ize: bool = True, image_kwargs: Optional[dict] =

None)
Bases: pylinac.planar_imaging.ImagePhantomBase

228 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Parameters

* filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Leeds TOR phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

angle_override (None, float)— A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (x,
y)/(col, row).

size_override (None, float)— A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

ssd — The SSD of the phantom itself in mm.
low_contrast_method - The equation to use for calculating low contrast.

visibility threshold — The threshold for whether an ROI is “seen”.

5.13. Planar Imaging

229

pylinac Documentation, Release 3.8.2

classmethod from_demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)

Parameters url (str)— The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =

True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-
ple[List[matplotlib.figure.Figure], List[str]]

Plot the analyzed image.

Parameters

image (bool) — Show the image.

low_contrast (bool)— Show the low contrast values plot.
high contrast (bool)— Show the high contrast values plot.
show (bool) — Whether to actually show the image when called.

split_plots (bool)— Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters

filename ((str, file-like object })— The file to write the results to.

notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

open_file (bool)— Whether to open the file using the default program after cre-
ation.

metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ——————— Author: James Unit: True-
Beam

logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

230

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

e split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes.Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.LeedsTORBlue (filepath: Union[str, BinarylO, pathlib.Path],
normalize: bool = True, image_kwargs: Op-
tional[dict] = None)
Bases: pylinac.planar_imaging.LeedsTOR
The Leeds TOR (Blue) is for analyzing older Leeds phantoms which have slightly offset ROIs compared to the
newer, red-ring variant.

Parameters
* filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

classmethod from_demo_image ()
Instantiate and load the demo image.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’'Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

5.13. Planar Imaging 231

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method — The equation to use for calculating low contrast.
* visibility threshold — The threshold for whether an ROI is “seen”.
classmethod from_url (url: str)
Parameters url (str)— The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_ size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (bool) — Show the image.
¢ low_contrast (bool)— Show the low contrast values plot.
* high contrast (bool)— Show the high contrast values plot.
* show (bool) — Whether to actually show the image when called.

* split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

232 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object})— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

static run_demo () — None
Run the Leeds TOR phantom analysis demonstration.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

5.13. Planar Imaging 233

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

class pylinac.planar_imaging.StandardImagingQC3 (filepath: Union[str, BinarylO, path-
lib.Path], normalize: bool = True, im-
age_kwargs: Optional[dict] = None)

Bases: pylinac.planar_imaging.ImagePhantomBase
Parameters
e filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

classmethod from_demo_image ()
Instantiate and load the demo image.

static run_demo () — None
Run the Standard Imaging QC-3 phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’'Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary

234 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method — The equation to use for calculating low contrast.
* visibility threshold — The threshold for whether an ROI is “seen”.
classmethod from_url (url: str)
Parameters url (str)- The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_ size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (bool) — Show the image.
* low_contrast (bool)— Show the low contrast values plot.
* high contrast (bool)— Show the high contrast values plot.
* show (bool)— Whether to actually show the image when called.

* split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file—-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ————— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

5.13. Planar Imaging 235

pylinac Documentation, Release 3.8.2

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

* filename (None, str, stream)-— A stringrepresenting where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

e split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes.Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.StandardImagingQCXkV (filepath: Union[str, BinarylO, path-
lib.Path], normalize: bool = True, im-
age_kwargs: Optional[dict] = None)

Bases: pylinac.planar _imaging.StandardImagingQC3

Parameters
e filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Standard Imaging QC-3 phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

* low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

236 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

* center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (x,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method - The equation to use for calculating low contrast.
* visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from_demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)— The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (bool) — Show the image.
¢ low_contrast (bool)— Show the low contrast values plot.

* high_contrast (bool) - Show the high contrast values plot.

5.13. Planar Imaging

237

pylinac Documentation, Release 3.8.2

* show (bool)— Whether to actually show the image when called.

e split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

e logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes.Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

238 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

class pylinac.planar_imaging.LasVegas (filepath: Union/[str, BinarylO, pathlib.Path], normal-

ize: bool = True, image_kwargs: Optional[dict] =
None)

Bases: pylinac.planar_imaging.ImagePhantomBase

Parameters

e filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo ()
Run the Las Vegas phantom analysis demonstration.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis. Overridden because ROIs seen is based on visibility, not CNR.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

results_data (as_dict: bool = False) — Union[pylinac.planar_imaging.PlanarResult, dict]
Overridden because ROIs seen is based on visibility, not CNR

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’'Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

angle_override (None, float)-— A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.

5.13. Planar Imaging

239

pylinac Documentation, Release 3.8.2

If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method - The equation to use for calculating low contrast.
* visibility threshold - The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (bool)— Show the image.
* low_contrast (bool)— Show the low contrast values plot.
* high_contrast (bool) - Show the high contrast values plot.
* show (bool)— Whether to actually show the image when called.

e split_plots (bool)— Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict) - Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object})— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

240 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ———— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.DoselabMC2MV (filepath: Union[str, BinarylO, pathlib.Path],
normalize: bool = True, image_kwargs: Op-

tional[dict] = None)
Bases: pylinac.planar_imaging.DoselabMC2kV

Parameters
* filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Doselab MC2 M V-area phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’'Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

5.13. Planar Imaging 241

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method - The equation to use for calculating low contrast.
e visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters

* image (boo1l)— Show the image.

242

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

low_contrast (bool)— Show the low contrast values plot.
high_contrast (bool)— Show the high contrast values plot.
show (bool) — Whether to actually show the image when called.

split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters

L]

filename ((str, file-like object })— The file to write the results to.

notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

open_file (bool)— Whether to open the file using the default program after cre-
ation.

metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ———— Author: James Unit: True-
Beam

logo (Path, str)-— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,

to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-
rylO], None]

Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file

to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that

append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are

true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_

5.13. Planar Imaging

243

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.DoselabMC2kV (filepath: Union[str, BinarylO, pathlib.Path],
normalize: bool = True, image_kwargs: Op-
tional[dict] = None)
Bases: pylinac.planar_imaging.ImagePhantomBase
Parameters
e filepath (str) — Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Doselab MC2 kV-area phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

* invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary

244 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method — The equation to use for calculating low contrast.
* visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_ image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (boo1l)— Show the image.
* low_contrast (bool)— Show the low contrast values plot.
* high_contrast (bool)— Show the high contrast values plot.
* show (bool)— Whether to actually show the image when called.

* split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict) - Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

5.13.

Planar Imaging 245

pylinac Documentation, Release 3.8.2

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool)— This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.SNCMV (filepath: Union[str, BinarylO, pathlib.Path], normalize:
bool = True, image_kwargs: Optional[dict] = None)
Bases: pylinac.planar._imaging.SNCkKV

Parameters
* filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Sun Nuclear MV-QA phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’'Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

246 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method - The equation to use for calculating low contrast.
e visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters

* image (boo1l)— Show the image.

. Planar Imaging 247

pylinac Documentation, Release 3.8.2

* low_contrast (bool)— Show the low contrast values plot.
* high_contrast (bool)— Show the high contrast values plot.
* show (bool)— Whether to actually show the image when called.

* split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ———— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_

248 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open

background

class pylinac.planar_imaging.SNCMV12510 (filepath: Union[str, BinarylO, pathlib.Path], nor-

malize: bool = True, image_kwargs: Op-
tional[dict] = None)

Bases: pylinac.planar_imaging.SNCMV
The older SNC MV QA phantom w/ model number 1251000

Parameters

» filepath (str) — Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

angle_override (None, float)— A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

size_override (None, float)-— A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

5.13. Planar Imaging

249

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method - The equation to use for calculating low contrast.
* visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from_demo_image ()
Instantiate and load the demo image.

classmethod from url (url: str)
Parameters url (str)- The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_ size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (bool) — Show the image.
¢ low_contrast (bool)— Show the low contrast values plot.
* high contrast (bool)— Show the high contrast values plot.
* show (bool) — Whether to actually show the image when called.

e split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file—-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

250 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

static run_demo () — None
Run the Sun Nuclear MV-QA phantom analysis demonstration.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool)— This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.SNCKV (filepath: Union[str, BinarylO, pathlib.Path], normalize:
bool = True, image_kwargs: Optional[dict] = None)
Bases: pylinac.planar_imaging.ImagePhantomBase

Parameters
* filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Sun Nuclear kV-QA phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

5.13. Planar Imaging 251

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method - The equation to use for calculating low contrast.
e visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters

* image (boo1l)— Show the image.

252

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

low_contrast (bool)— Show the low contrast values plot.
high_contrast (bool)— Show the high contrast values plot.
show (bool) — Whether to actually show the image when called.

split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

plt_kwargs (dict)— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters

L]

filename ((str, file-like object })— The file to write the results to.

notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

open_file (bool)— Whether to open the file using the default program after cre-
ation.

metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ———— Author: James Unit: True-
Beam

logo (Path, str)-— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,

to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-
rylO], None]

Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file

to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that

append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are

true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_

5.13. Planar Imaging

253

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.PTWEPIDQC (filepath: Union[str, BinarylO, pathlib.Path], normal-

ize: bool = True, image_kwargs: Optional[dict] =

None)
Bases: pylinac.planar_imaging.ImagePhantomBase

Parameters
e filepath (str) — Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Standard Imaging QC-3 phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary

254

Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

value.

* ssd - The SSD of the phantom itself in mm.
* low_contrast_method — The equation to use for calculating low contrast.
* visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_ image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (boo1l)— Show the image.
* low_contrast (bool)— Show the low contrast values plot.
* high_contrast (bool)— Show the high contrast values plot.
* show (bool)— Whether to actually show the image when called.

* split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict) - Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing { ‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

5.13.

Planar Imaging 255

pylinac Documentation, Release 3.8.2

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-
rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool)— This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.IBAPrimusA (filepath: Union[str, BinarylO, pathlib.Path], nor-
malize: bool = True, image_kwargs: Op-
tional[dict] = None)
Bases: pylinac.planar_imaging.ImagePhantomBase
Parameters
» filepath (str) — Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes.Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

phantom_angle
Cache this; calculating the angle is expensive

256 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html

pylinac Documentation, Release 3.8.2

static run_demo () — None
Run the Standard Imaging QC-3 phantom analysis demonstration.

analyze (low_contrast_threshold: float = 0.05, high_contrast_threshold: float = 0.5, invert: bool
= False, angle_override: Optional[float] = None, center_override: Optional[tuple] =
None, size_override: Optional[float] = None, ssd: float = 1000, low_contrast_method:
pylinac.core.roi.Contrast = <Contrast MICHELSON: ’Michelson’>, visibility_threshold:

float = 100) — None
Analyze the phantom using the provided thresholds and settings.

Parameters

¢ low_contrast_threshold (float) — This is the contrast threshold value
which defines any low-contrast ROI as passing or failing.

* high_contrast_threshold (float) — This is the contrast threshold value
which defines any high-contrast ROI as passing or failing.

e invert (bool) — Whether to force an inversion of the image. This is useful if
pylinac’s automatic inversion algorithm fails to properly invert the image.

* angle_override (None, float)- A manual override of the angle of the phan-
tom. If None, pylinac will automatically determine the angle. If a value is passed, this
value will override the automatic detection.

Note: 0 is pointing from the center toward the right and positive values go counter-
clockwise.

e center_override (None, 2-element tuple)— A manual override of the
center point of the phantom. If None, pylinac will automatically determine the center.
If a value is passed, this value will override the automatic detection. Format is (X,
y)/(col, row).

e size_override (None, float)- A manual override of the relative size of the
phantom. This size value is used to scale the positions of the ROIs from the center.
If None, pylinac will automatically determine the size. If a value is passed, this value
will override the automatic sizing.

Note: This value is not necessarily the physical size of the phantom. It is an arbitrary
value.

¢ ssd — The SSD of the phantom itself in mm.
* low_contrast_method — The equation to use for calculating low contrast.
e visibility threshold — The threshold for whether an ROI is “seen”.

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)—The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_px
The phantom bounding box size in pixels”2 at the isoplane.

5.13. Planar Imaging 257

pylinac Documentation, Release 3.8.2

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (image: bool = True, low_contrast: bool = True, high_contrast: bool =
True, show: bool = True, split_plots: bool = False, **plt_kwargs) — Tu-

ple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image.

Parameters
* image (bool)— Show the image.
* low_contrast (bool) - Show the low contrast values plot.
* high contrast (bool)— Show the high contrast values plot.
* show (bool)— Whether to actually show the image when called.

e split_plots (bool) — Whether to split the resulting image into individual plots.
Useful for saving images into individual files.

* plt_kwargs (dict)-— Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object})— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ——————— Author: James Unit: True-
Beam

e logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

Parameters as_1list (bool)— Whether to return as a list of strings vs single string. Pretty
much for internal usage.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, split_plots: bool = False,
to_streams: bool = False, **kwargs) — Union[List[str], Dict[str, Bina-

rylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

258 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* split_plots (bool) — If split_plots is True, multiple files will be created that
append a name. E.g. my_file.png will become my_file_image.png, my_file_mtf.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool)— This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

class pylinac.planar_imaging.StandardImagingFC2 (filepath: Union[str, BinarylO, path-
lib.Path], normalize: bool = True, im-
age_kwargs: Optional[dict] = None)
Bases: pylinac.planar_imaging.ImagePhantomBase
Parameters
* filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

static run_demo () — None
Run the Standard Imaging FC-2 phantom analysis demonstration.

analyze (invert: bool = False, fwxm: int = 50) — None
Analyze the FC-2 phantom to find the BBs and the open field and compare to each other as well as the
EPID.

Parameters

e invert (bool) — Whether to force-invert the image from the auto-detected inver-
sion.

e fwxm (int) — The FWXM value to use to detect the field. For flattened fields, the
default of 50 should be fine. For FFF fields, consider using a lower value such as
25-30.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

field epid offset_mm
Field offset from CAX using vector difference

field bb_offset_mm
Field offset from BB centroid using vector difference

results_data (as_dict: bool = False) — Union[pylinac.planar_imaging.LightRadResult, dict]
Return the results as a dict or dataclass

plot_analyzed_image (show: bool = True, **kwargs) — Tuple[List[matplotlib.figure.Figure],

List[str]]
Plot the analyzed image.

Parameters show (bool)— Whether to actually show the image when called.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, to_streams: bool = False,
**kwargs) — Union[List[str], Dict[str, BinarylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

5.13. Planar Imaging 259

pylinac Documentation, Release 3.8.2

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* to_streams (bool)— This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

e logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

classmethod from_demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)- The URL to the image.

magnification_ factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes. Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

class pylinac.planar_imaging.IMTLRad (filepath: Union[str, BinarylO, pathlib.Path], normalize:
bool = True, image_kwargs: Optional[dict] = None)
Bases: pylinac.planar_imaging.StandardImagingFC2

The IMT light/rad phantom: https://www.imtqa.com/products/l-rad
Parameters

* filepath (str) — Path to the image file.

260 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://www.imtqa.com/products/l-rad

pylinac Documentation, Release 3.8.2

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

analyze (invert: bool = False, fwxm: int = 50) — None
Analyze the FC-2 phantom to find the BBs and the open field and compare to each other as well as the
EPID.

Parameters

e invert (bool) — Whether to force-invert the image from the auto-detected inver-
sion.

e fwxm (int) — The FWXM value to use to detect the field. For flattened fields, the
default of 50 should be fine. For FFF fields, consider using a lower value such as
25-30.

field bb_offset _mm
Field offset from BB centroid using vector difference

field epid offset_mm
Field offset from CAX using vector difference

classmethod from demo_image ()
Instantiate and load the demo image.

classmethod from_ url (url: str)
Parameters url (str)— The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox_size_px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed image (show: bool = True, **kwargs) — Tuple[List[matplotlib.figure.Figure],

List[str]]
Plot the analyzed image.

Parameters show (bool)— Whether to actually show the image when called.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =

None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object})— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

5.13. Planar Imaging 261

pylinac Documentation, Release 3.8.2

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: ———— Author: James Unit: True-
Beam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

results_data (as_dict: bool = False) — Union[pylinac.planar_imaging.LightRadResult, dict]
Return the results as a dict or dataclass

static run_demo () — None
Run the Standard Imaging FC-2 phantom analysis demonstration.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, to_streams: bool = False,
**kwargs) — Union[List[str], Dict[str, BinarylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]

The value to use as the maximum when displaying the image. Helps show contrast of images, specifically

if there is an open background

window_floor () — Optional[float]

The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes.Axes.imshow.html) Helps show contrast of images, specifically if there is an open

background

class pylinac.planar_imaging.SNCFSQA (filepath: Union[str, BinarylO, pathlib.Path], normalize:

bool = True, image_kwargs: Optional[dict] = None)
Bases: pylinac.planar_imaging.StandardImagingFC2

SNC light/rad phantom. See the ‘FSQA’ phantom and specs: https://www.sunnuclear.com/products/

suncheck-machine.

Unlike other light/rad phantoms, this does not have at least a centered BB. The edge markers are in the penumbra
and thus detecting them is difficult. We thus detect the one offset marker in the top right of the image. This is
offset by 4cm in each direction. We can then assume that the phantom center is -4cm from this point, creating a

‘virtual center’ so we have an apples-to-apples comparison.
Parameters
e filepath (str)— Path to the image file.

* normalize (bool)— Whether to “ground” and normalize the image. This can affect
contrast measurements, but for backwards compatibility this is True. You may want to
set this to False if trying to compare with other software.

* image_kwargs (dict) — Keywords passed to the image load function; this would
include things like DPI or SID if applicable

262 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://www.sunnuclear.com/products/suncheck-machine
https://www.sunnuclear.com/products/suncheck-machine

pylinac Documentation, Release 3.8.2

analyze (invert: bool = False, fwxm: int = 50) — None
Analyze the FC-2 phantom to find the BBs and the open field and compare to each other as well as the

EPID.
Parameters

* invert (bool) — Whether to force-invert the image from the auto-detected inver-
sion.

e fwxm (int) — The FWXM value to use to detect the field. For flattened fields, the
default of 50 should be fine. For FFF fields, consider using a lower value such as
25-30.

field bb _offset _mm
Field offset from BB centroid using vector difference

field epid offset_mm
Field offset from CAX using vector difference

classmethod from_demo_image ()
Instantiate and load the demo image.

classmethod from url (url: str)
Parameters url (str)— The URL to the image.

magnification_factor
The mag factor of the image based on SSD vs SAD

phantom_bbox size_ px
The phantom bounding box size in pixels”2 at the isoplane.

phantom_ski_region
The skimage region of the phantom outline.

plot_analyzed_image (show: bool = True, **kwargs) — Tuple[List[matplotlib.figure.Figure],
List[str]]
Plot the analyzed image.
Parameters show (bool)— Whether to actually show the image when called.

publish_pdf (filename: str, notes: str = None, open_file: bool = False, metadata: Optional[dict] =
None, logo: Union[pathlib.Path, str, None] = None)
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra data to be passed and shown in the PDF. The key and
value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’: ‘True-
Beam’} would result in text in the PDF like: —————— Author: James Unit: True-
Beam

e logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

results (as_list: bool = False) — Union[str, list]
Return the results of the analysis.

5.13. Planar Imaging 263

pylinac Documentation, Release 3.8.2

results_data (as_dict: bool = False) — Union[pylinac.planar_imaging.LightRadResult, dict]
Return the results as a dict or dataclass

static run_demo () — None
Run the Standard Imaging FC-2 phantom analysis demonstration.

save_analyzed_image (filename: Union[None, str, BinarylO] = None, to_streams: bool = False,
**kwargs) — Union[List[str], Dict[str, BinarylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

e filename (None, str, stream)-— A string representing where to save the file
to. If split_plots and to_streams are both true, leave as None as newly-created streams
are returned.

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

window_ceiling () — Optional[float]
The value to use as the maximum when displaying the image. Helps show contrast of images, specifically
if there is an open background

window_floor () — Optional[float]
The value to use as the minimum when displaying the image (see https://matplotlib.org/stable/api/_as_
gen/matplotlib.axes.Axes.imshow.html) Helps show contrast of images, specifically if there is an open
background

5.14 Field Analysis

5.14.1 Overview

The field analysis module (pylinac.field_analysis) allows a physicist to analyze metrics from an EPID to
measure penumbra, field width, etc. Additionally, protocols can be used which can calculate flatness & symmetry.
The module is very flexible, allowing users to choose different types of interpolation, normalization, centering, etc.
Users can also creat custom protocols to perform other types of field analysis within the main pylinac flow.

The module implements traditional analysis like FWHM as well as new methods as outlined in the pre-publication of
the NCS-33 report which include edge fitting for FFF fields as well as a “top” calculation for the center position of
FFF beams.

Note: This is not a purely faithful implementation of NCS-33. There are a few differences w/r/t how stringent field
widths are applied. E.g. the “top” calculation in NCS-33 is over the central Scm. Pylinac simply uses a field width
ratio which may or may not be Scm.

The module’s main class is FieldAnalysis which is used for EPID images.

5.14.2 Running the Demo

To run the demo, import the main class and run the demo method:

from pylinac import FieldAnalysis

FieldAnalysis.run_demo ()

264 Chapter 5. Contributing

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
https://radiationdosimetry.org/files/Prepublication_-_NCS_Report_33_Beam_parameters_V2020-07-29.pdf

pylinac Documentation, Release 3.8.2

Field Profile Analysis

Horizontal Profile

mm
v 0 100 200 300 400 flatsym_demo.dcm
c 1 1 1 1 1 B 7'5 e
§ X Profile Extraction Area
& 5.0 >
°© D
N 2.5 €
5 £
>
£ 0.0Y
o) T T T T T
= 0 250 500 750 1000]]
pixels Vertical Profile
mm
q_) 0 100 200 300
]]]]]
c 4= & 7.5 —
—— Profile S 1.0 <
Penumbra region § 5.0 E
X Field edge T 0.5 1]
* Symmetry max N - 2.5 E
—-= Flat i e >
atness region % 0.0 L | . | Fo.o A
= 0 200 400 600 800

pixels

5.14. Field Analysis 265

pylinac Documentation, Release 3.8.2

Which will also result in the following output:

Field Analysis Results

File: E:\OneDrive — F...demo_files\flatsym_demo.dcm
Protocol: VARIAN

Centering method: Beam center

Normalization method: Beam center

Interpolation: Linear

Edge detection method: Inflection Derivative

Penumbra width (20/80) :
Left: 2.7mm

Right: 3.0mm

Top: 3.9mm

Bottom: 2.8mm

Field Size:
Horizontal: 140.9mm
Vertical: 200.3mm

CAX to edge distances:

CAX —-> Top edge: 99.8mm

CAX —-> Bottom edge: 100.5mm
CAX —-> Left edge: 60.4mm
CAX -> Right edge: 80.5mm

Top slope: -0.006%/mm
Bottom slope: 0.044%/mm
Left slope: 0.013%/mm
Right slope: 0.014%/mm

Protocol data:
Vertical symmetry: -2.631%
Horizontal symmetry: —-3.006%

Vertical flatness: 1.700%
Horizontal flatness: 1.857%

5.14.3 Typical Use

In most instances, a physicist is interested in quickly calculating the flatness, symmetry, or both of the image in
question. The field analysis module allows you to do this easily and quickly.

To get started, import the FieldAnalysis class:

from pylinac import FieldAnalysis

Loading images is easy and just like any other module:

from a file
my_file = r"C:/my/QA/folder/img.dcm"
my_img = FieldAnalysis (path=my_file)

Alternatively, you can load data from a 2D device array:

266 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

from pylinac import DeviceFieldAnalysis

Profiler file
my_file = r"C:/my/profiler/data.prm"
my_img = DeviceFieldAnalysis (path=my_file)

If you don’t have an image you can load the demo image:

’my_img = FieldAnalysis.from_demo_image ()

You can then calculate several field metrics with the analyze () method:

’my_img.analyze()

After analysis, the results can be printed, plotted, or saved to a PDF:

print (my_img.results()) # print results as a string
my_img.plot_analyzed_image () # matplotlib image

my_img.publish_pdf (filename="flatsym.pdf") # create PDF and save to file
my_img.results_data() # dict of results

5.14.4 Analyze Options

The analysis algorithm allows the user to change numerous parameters about the analysis including automatic/manual
centering, profile extraction width, field width ratio, penumbra values, interpolation, normalization, and edge detection.
See pylinac.field analysis.FieldAnalysis.analyze () for details on each parameter

The protocol can also be specified here; this is where both default and custom algorithms like flatness and symmetry
can be used. See Protocol Definitions for the common flatness/symmetry algorithms provided out of the box. For
custom protocols, see Creating & Using Custom Protocols.

from pylinac import Protocol, Centering, Edge, Normalization, Interpolation

my_img.analyze (protocol=Protocol.ELEKTA, centering=Centering.BEAM_CENTER, in_field_
—ratio=0.8,

is_FFF=True, interpolation=Interpolation.SPLINE, interpolation_
—resolution_mm=0.2,

edge_detection_method=Edge.INFLECTION_HILL)

Centering

There are 3 centering options: manual, beam center, and geometric center.

Manual

Manual centering means that you as the user specify the position of the image that the profiles are taken from.

from pylinac import FieldAnalysis, Centering

fa = FieldAnalysis(...)
fa.analyze (..., centering=Centering.MANUAL) # default is the middle of the image

(continues on next page)

5.14. Field Analysis 267

pylinac Documentation, Release 3.8.2

(continued from previous page)

or specify a custom location
fa.analyze (..., centering=Centering.MANUAL, vert_position=0.3, horiz_position=0.38)
take profile at 30% width (i.e. left side) and 80% height

Beam center

This is the default for EPID images/FieldAnalysis. It first looks for the field to find the approximate center along
each axis. Then it extracts the profiles and continues. This is helpful if you always want to be at the center of the field,
even for offset fields or wedges.

from pylinac import FieldAnalysis, Centering

fa = FieldAnalysis(...)
fa.analyze(...) # nothing special needed as it's the default

You CANNOT specify a position. These values will be ignored

fa.analyze (..., centering=Centering.BEAM_CENTER, vert_position=0.3, horiz_position=0.
—8)

this is allowed but will result in the same result as above

Geometric center

This is the default for 2D device arrays/DeviceFieldAnalysis. It will always find the middle pixel and extract
the profiles from there. This is helpful if you always want to be at the center of the image.

from pylinac import FieldAnalysis, Centering

fa = FieldAnalysis(...)
fa.analyze(...) # nothing special needed as it's the default

You CANNOT specify a position. These values will be ignored

fa.analyze (..., centering=Centering.GEOMETRIC_CENTER, vert_position=0.3, horiz_
—position=0.8)

this is allowed but will result in the same result as above

Edge detection

Edge detection is important for determining the field width and beam center (which is often used for symmetry). There
are 3 detection strategies: FWHM, inflection via derivative, and inflection via the Hill/sigmoid/4PNLR function.

FWHM

The full-width half-max strategy is traditional and works for flat beams. It can give poor values for FFF beams.

from pylinac import FieldAnalysis, Edge

fa = FieldAnalysis(...)
fa.analyze (..., edge_detection_method=Edge.FWHM)

268 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Inflection (derivative)

The inflection point via the derivative is useful for both flat and FFF beams, and is thus the default for
FieldAnalysis. The method will find the positions of the max and min derivative of the values. Using a O-
crossing of the 2nd derivative can be tripped up by noise so it is not used.

Note: This method is recommended for high spatial resolution images such as the EPID, where the derivative has
several points to use at the beam edge. It is not recommended for 2D device arrays.

from pylinac import FieldAnalysis, Edge
fa = FieldAnalysis(...) # nothing special needed as it's the default

you may also specify the edge smoothing value. This is a gaussian filter applied to,
—the derivative just for the purposes of finding the min/max derivative.

This is to ensure the derivative is not caught by some noise. It is usually not,,
—necessary to change this.

fa = FieldAnalysis (..., edge_smoothing_ratio=0.005)

Inflection (Hill)

The inflection point via the Hill function is useful for both flat and FFF beams The fitting of the function is best for
low-resolution data, and is thus the default for DeviceFieldAnalysis. The Hill function, the sigmoid function,
and 4-point non-linear regression belong to a family of logistic equations to fit a dual-curved value. Since these fit a
function to the data the resolution problems are eliminated. Some examples can be seen here. The generalized logistic
function has helpful visuals as well here.

The function used here is:

fla)=A+ =4

14¢°7

where A is the low asymptote value (~0 on the left edge of a field), B is the high asymptote value (~1 for a normalized
beam on the left edge), C' is the inflection point of the sigmoid curve, and D is the slope of the sigmoid.

The function is fitted to the edge data of the field on each side to return the function. From there, the inflection point,
penumbra, and slope can be found.

Note: This method is recommended for low spatial resolution images such as 2D device arrays, where there is very
little data at the beam edges. While it can be used for EPID images as well, the fit can have small errors as compared
to the direct data. The fit, however, is much better than a linear or even spline interpolation at low resolutions.

from pylinac import FieldAnalysis, Edge
fa = FieldAnalysis (..., edge_detection_method=Edge.INFLECTION_HILL)

you may also specify the hill window. This is the size of the window (as a ratio),_
—~to use to fit the field edge to the Hill function.

fa = FieldAnalysis (..., edge_detection_method=Edge.INFLECTION_HILL, hill_window_
—ratio=0.05)

i.e. use a 5% field width about the edges to fit the Hill function.

Note: When using this method, the fitted Hill function will also be plotted on the image. Further, the exact field edge

5.14. Field Analysis 269

https://en.wikipedia.org/wiki/Sigmoid_function#Examples
https://en.wikipedia.org/wiki/Generalised_logistic_function

pylinac Documentation, Release 3.8.2

marker (green x) may not align with the Hill function fit. This is just a rounding issue due to the plotting mechanism.
The field edge is really using the Hill fit under the hood.

5.14.5 Normalization

There are 4 options for interpolation: None, GEOMETRIC_CENTER, BEAM_CENTER, and MAX. These should be
self-explanatory, especially in light of the centering explanations.

from pylinac import FieldAnalysis, Normalization

fa = FieldAnalysis(...)
fa.analyze (..., normalization_method=Normalization.BEAM_ CENTER)

5.14.6 Interpolation

There are 3 options for interpolation: NONE, LINEAR, and SPLINE.

None

A method of NONE will obviously apply no interpolation. Other interpolation parameters (see below) are ignored.
This is the default method for DeviceFieldAnalysis

Note: When plotting the data, if interpolation is None and the data is from a device, the data will be plotted as
individual markers (+). If interpolation is applied to device data or it is a DICOM/EPID image, the data is plotted as a
line.

Linear

This will apply a linear interpolation to the original data. Along with this, the parameter interpolation_resolution_mm
determine the amount of interpolation. E.g. a value of 0.1 will resample the data to get data points 0.1mm apart. This
is the default method for FieldAnalysis.

from pylinac import FieldAnalysis, Interpolation

fa = FieldAnalysis(...)
fa.analyze (..., interpolation=Interpolation.LINEAR, interpolation_resolution_mm=0.1)

Spline

This will apply a cubic spline interpolation to the original data. Along with this, the parameter interpola-
tion_resolution_mm determine the amount of interpolation. E.g. a value of 0.1 will resample the data to get data
points 0.1mm apart.

from pylinac import FieldAnalysis, Interpolation

fa = FieldAnalysis(...)
fa.analyze (..., interpolation=Interpolation.SPLINE, interpolation_resolution_mm=0.1)

270 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.14.7 Protocol Definitions
There are multiple definitions for both flatness and symmetry. Your machine vendor uses certain equations, or your

clinic may use a specific definition. Pylinac has a number of built-in definitions which you can use. Know also that
you can create your own if you don’t like/want to extend these Creating & Using Custom Protocols.

None
Technically, you are allowed a “None” protocol (Protocol . NONE), which just means nothing beyond the basic field

analysis is performed. If you just want the penumbra, distances to CAX, etc, without flatness/symmetry/custom algos
then this is for you.

Varian

This is the default protocol if you don’t specify one (Protocol.VARIAN). Two metrics are included, flatness &
symmetry.

from pylinac import FieldAnalysis, Protocol

fa = FieldAnalysis(...)
fa.analyze (protocol=Protocol.VARIAN, ...)

Flatness

Flatness is defined by the variation (difference) across the field values within the field width.
flatness = 100 * | Doz — Dminl/(Dmaz + Dmin)

If the field width is set to, e.g. 80%, then the flatness is calculated over all the values within that 80%. Flatness is a
scalar and always positive.

Symmetry

Symmetry is defined as the Point Difference:
symmetry = 100 * max (| Lps — Rpt|)/Doax
where L,; and R are equidistant from the beam center.

Symmetry is calculated over the specified field width (e.g. 80%) as set in by analyze (). Symmetry can be positive
or negative. A negative value means the right side is higher. A positive value means the left side is higher.

Elekta

This is specified by passing protocol=Protocol .ELEKTA to analyze.

from pylinac import FieldAnalysis, Protocol

fa = FieldAnalysis(...)
fa.analyze (protocol=Protocol .ELEKTA, ...)

5.14. Field Analysis 271

pylinac Documentation, Release 3.8.2

Flatness

Flatness is defined by the ratio of max/min across the field values within the field width.
flatness = 100 * Dyyas/Dmin

If the field width is set to, e.g. 80%, then the flatness is calculated over all the values within that 80%. Flatness is a
scalar and always positive.

Symmetry

Symmetry is defined as the Point Difference Quotient (aka IEC):
symmetry = 100 * max (| Lpt/Rpt|, | Rpt/Lypt|)
where L,; and R,; are equidistant from the beam center.

Symmetry is calculated over the specified field width (e.g. 80%) as set in by analyze (). Symmetry can be positive
or negative. A negative value means the right side is higher. A positive value means the left side is higher.

Siemens

This is specified by passing protocol=Protocol.SIEMENS to analyze.

from pylinac import FieldAnalysis, Protocol

fa = FieldAnalysis(...)
fa.analyze (protocol=Protocol.SIEMENS, ...)

Flatness

Flatness is defined by the variation (difference) across the field values within the field width.
flatness = 100 * |Dma'r - szn|/(DmaT + Dmin)

If the field width is set to, e.g. 80%, then the flatness is calculated over all the values within that 80%. Flatness is a
scalar and always positive.

Symmetry

Symmetry is defined as the ratio of area on each side about the CAX:
symmetry = 100 * (Ajepe — Aright)/(Aieft + Aright)

Symmetry is calculated over the specified field width (e.g. 80%) as set in by analyze (). Symmetry can be positive
or negative. A negative value means the right side is higher. A positive value means the left side is higher.

5.14.8 Creating & Using Custom Protocols

Protocols allow the user to perform specific image metric algorithms. This includes things like flatness & symmetry.
Depending on the protocol, different methods of determining the flatness/symmetry/whatever exist. Pylinac provides
a handful of protocols out of the box, but it is easy to add your own custom algorithms.

272 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

To create a custom protocol you must 1) create custom algorithm functions, 2) create a protocol class that 3) inherits
from Enum and 4) defines a dictionary with a calc, unit, and plot key/value pair. The plot key is optional; it
allows you to plot something if you also want to see your special algorithm (e.g. if it used a fitting function and you
want to plot the fitted values).

e calc should be a function to calculate a specific, singular value such as flatness.
* unit should be a string that specifies the unit of calc. If it is unitless leave it as an empty string (' ')
¢ plot is OPTIONAL and is a function that can plot something to the profile views (e.g. a fitting function)

The calc and plot values should be functions with a specific signature as shown in the example below:

import enum

create the custom algorithm functions
the “‘calc” function must have the following signature
def my_special_ flatness(profile: SingleProfile, in_field_ratio: float, =xxkwargs) —>
—float:
do whatever. Must return a float. “~“profile”" will be called twice, once for the_

[

—vertical profile and horizontal profile.

the kwargs are passed to "‘analyze' and can be used here for your own purposes,
— (e.g. fitting parameters)

my_special_value = kwargs.get ("funkilicious")

flatness = profile...

return flatness

custom plot function for the above flatness function
This is OPTIONAL
If you do implement this, it must have the following signature
def my_special_ flatness_plot (instance, profile: SingleProfile, axis: plt.Axes) —>
—None:
instance is the FieldAnalysis instance; i.e. it's basically "~“self’".
do whatever; typically, you will do an axis.plot ()
axis.plot(...)

[

custom protocol MUST inherit from Enum
class MySpecialProtocols (enum.Enum) :
note you can specify several protocols if you wish
PROTOCOL_1 = {
for each protocol, you can specify any number of metrics to calculate. E.g._
—2 symmetry calculations

'my flatness': {'calc': my_special_flatness, 'unit': '$', 'plot': my_special_
—flatness_plot},
'my symmetry': ...,
'my other flatness metric': ...,
}
PROTOCOL_2 =

proceed as normal
fa = FieldAnalysis(...)
fa.analyze (protocol=MySpecialProtocols.PROTOCOL_1, ...)

Passing in custom parameters

You may pass custom parameters to these custom algorithms via the analyze method as simple keyword arguments:

5.14. Field Analysis 273

pylinac Documentation, Release 3.8.2

fa = FieldAnalysis(...)
fa.analyze (..., my_special_variable=42)

The parameter will then be passed to the custom functions:

def my_special_flatness (profile: SingleProfile, in_field_ratio: float, =xkwargs) ->
—~float:

my_special_value = kwargs.get ("my_special variable™) # 42

flatness = profile...

return flatness

Note: The SingleProfile passed to the functions is very powerful and can calculate numerous helpful data
for you such as the field edges, minimum/maximum value within the field, and much more. Read the SingleProfile
documentation before creating a custom algorithm.

5.14.9 FFF fields

The field analysis module can handle FFF beams, or more specifically, calculating extra metrics associated with FFF
fields. These metrics are largely from the NCS-33 pre-publication and include the “top” position, and the slopes of the
field on each side.

These metrics are always calculated (even for flat beams), but will be shown in the results () output and also on
the plotted image of plot_analyzed_image () if the is_FFF flag is true.

The easiest way to demonstrate this is through the Device demo, which is an FFF field:

from pylinac import DeviceFieldAnalysis, Protocol

fa = DeviceFieldAnalysis.from_demo_image ()
fa.analyze (protocol=Protocol.VARIAN, is_FFF=True)
fa.plot_analyzed_image ()

“Top” metric
The “top” metric is the fitted position of the peak of a FFF beam. It uses the central region of the field as specified by
the slope_exclusion_ratio. E.g. if the value is 0.3 it will use the central 30% field width.

The central region is fitted to a 2nd order polynomial and then the max of the polynomial is found. That value is the
“top” position. This helps to account for noise in the profile.

When printing results for an FFF beam there will be a section like so:

'Top' vertical distance from CAX: 1.3mm

'Top' horizontal distance from CAX: 0.6mm

'Top' vertical distance from beam center: 1.7mm
'Top' horizontal distance from beam center: 0.3mm

Field slope

For FFF beams, an additional metric is calculated: the slope of each side of the field. Since traditional flatness
algorithms aren’t tuned for FFF beams they can be noisy or non-sensible. By measuring the slope of each side of the
field the flatness can be measured more accurately (as a slope) for trending and consistency purposes.

274 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Field Profile Analysis

Horizontal Profile Vertical Profile
mm mm
0 100 200 300 0 100 200 300
Q [}
n %]
C C
o < © =
oX X a : X
a < § 061 + Profile -4
e 5 x Penumbra region s
D 2 9 £ will g
N E N — Hill fit + F3E
® E T 0479 X Fieldedge £
g 2 g n 1] H . n
S S —— "top" polyngmial fit Lo
X llto n O HY
0.2 A 0.2 A . p P
-1 in-field sjope L1
| -_f_ Symmetry max 1
0.0 WJ tm_ -0 0.0 4= Flatness region Hy | o
0 20 40 60 0 20 40 60
detector detector

5.14. Field Analysis 275

pylinac Documentation, Release 3.8.2

The slope is calculated in the regions between the field width edges and the slope exclusion ratio. E.g. a field width
ratio of 0.8 and a slope exclusion ratio of 0.4 will mean that the regions between +/-0.4 (0.8/2) from the CAX to +/-0.2
(0.4/2) will be used to fit linear regressions.

When printing results for an FFF beam there will be a section like so:

Top slope: 0.292%/mm
Bottom slope: -0.291%/mm
Left slope: 0.295%/mm
Right slope: -0.296%/mm

5.14.10 Accessing data

Changed in version 3.0.

Using the module in your own scripts? While the analysis results can be printed out, if you intend on using them
elsewhere (e.g. in an API), they can be accessed the easiest by using the results_data () method which returns a
FieldResult instance.

Note: While the pylinac tooling may change under the hood, this object should remain largely the same and/or
expand. Thus, using this is more stable than accessing attrs directly.

You can access most data you get from results ():

fa = FieldAnalysis...
fa.analyze(...)
data = fa.results_data()

data.top_penumbra_mm
data.beam_center_to_left_mm

You may also access protocol data in the protocol_results dictionary. These results must be in a dictionary
because the protocol names and fields are dynamic and not known a priori.

data.protocol_results['flatness_vertical']
data.protocol_results|['symmetry_ horizontal']

The keys of this dict are defined by the protocol names. Using the example from the Creating & Using Custom
Protocols section, we would access that custom protocol data as:

data.protocol_results['my flatness_vertical']
data.protocol_results['my flatness_horizontal']

because the protocol name was my flatness.

5.14.11 Algorithm
There is little of a true “algorithm” in field_analysis other than analyzing profiles. Thus, this section is more
terminology and notekeeping.
Allowances
* The image can be any size.

* The image can be EPID (actually just DICOM) or a 2D device array file.

276 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* The image can be either inversion (Radiation is dark or light).
* The image can be off-center.
Restrictions

e The module is only meant for photon analysis at the moment (there are sometimes different equations for
electrons for the same definition name).

* Analysis is limited to normal/parallel directions. Thus if the image is rotated there is no way to account for it
other than rotating the image before analysis.

Analysis

» Extract profiles - With the positions given, profiles are extracted and analyzed according to the method specified
(see Protocol Definitions). For symmetry calculations that operate around the CAX, the CAX must first be
determined, which is the center of the FWHM of the profile.

5.14.12 API Documentation

Main classes

These are the classes a typical user may interface with.

class pylinac.field_analysis.FieldAnalysis (path: Union[str; BinarylO], filter: Op-
tional[int] = None, image_kwargs: Op-
tional[dict] = None)
Bases: object
Class for analyzing the various parameters of a radiation image, most commonly an open image from a linac.
Parameters

* path — The path to the image.

» filter -If None, no filter is applied. If an int, a median filter of size n pixels is applied.
Generally, a good idea. Default is None for backwards compatibility.

image = None
vert_profile = None
horiz_profile = None

classmethod from_demo_image ()
Load the demo image into an instance.

static run_demo () — None
Run the Field Analysis demo by loading the demo image, print results, and plot the profiles.

5.14. Field Analysis 277

pylinac Documentation, Release 3.8.2

analyze (protocol: pylinac.field_analysis.Protocol = <Protocol. VARIAN: {’symmetry’:
{calc’: <function symmetry_point_difference>, ’unit’: "%, ’plot’: <func-
tion plot_symmetry_point_difference>}, flatness’: {’calc’: <function flat-
ness_dose_difference>, ’unit’: %’, ’plot’: <function plot_flatness>}}>, centering:
Union[pylinac.field_analysis.Centering, str] = <Centering. BEAM_CENTER: ’Beam cen-
ter’>, vert_position: float = 0.5, horiz_position: float = 0.5, vert_width: float = 0,
horiz_width: float = 0, in_field_ratio: float = 0.8, slope_exclusion_ratio: float = 0.2, invert:
bool = False, is_FFF: bool = False, penumbra: Tuple[float, float] = (20, 80), interpolation:
Union[pylinac.core.profile.Interpolation, str, None] = <Interpolation.LINEAR: ’Linear’>,
interpolation_resolution_mm: float = 0.1, ground: bool = True, normalization_method:
Union[pylinac.core.profile. Normalization, str] = <Normalization.BEAM_CENTER:
‘Beam center’>, edge_detection_method: Union[pylinac.core.profile.Edge, str] =
<Edge INFLECTION_DERIVATIVE: ’Inflection Derivative’>, edge_smoothing_ratio:

float = 0.003, hill_window_ratio: float = 0.15, **kwargs) — None
Analyze the image to determine parameters such as field edges, penumbra, and/or flatness & symmetry.

Parameters

e protocol (Protocol)—The analysis protocol. See Protocol Definitions for equa-
tions.

* centering (Centering) — The profile extraction position technique. Beam cen-
ter will determine the beam center and take profiles through the middle. Geometric
center will simply take profiles centered about the image in both axes. Manual will
use the values of vert_position and horiz_position as the position. See Centering.

* vert_position — The distance ratio of the image to sample. E.g. at the default
of 0.5 the profile is extracted in the middle of the image. 0.0 is at the left edge of the
image and 1.0 is at the right edge of the image.

Note: This value only applies when centering is MANUAL.

* horiz_position — The distance ratio of the image to sample. E.g. at the default
of 0.5 the profile is extracted in the middle of the image. 0.0 is at the top edge of the
image and 1.0 is at the bottom edge of the image.

Note: This value only applies when centering is MANUAL.

e vert_width — The width ratio of the image to sample. E.g. at the default of 0.0
a 1 pixel wide profile is extracted. 0.0 would be 1 pixel wide and 1.0 would be the
vertical image width.

* horiz_width — The width ratio of the image to sample. E.g. at the default of 0.0
a 1 pixel wide profile is extracted. 0.0 would be 1 pixel wide and 1.0 would be the
horizontal image width.

e in_field_ratio — The ratio of the field width to use for protocol values. E.g. 0.8
means use the 80% field width.

* slope_exclusion_ratio — This is the ratio of the field to use to 1) calculate the
“top” of an FFF field as well as 2) exclude from the “slope” calculation of each side
of the field. Alternatively, this also defines the area to use for the slope calculation.
E.g. an in_field_ratio of 0.8 and slope_exclusion_ratio of 0.2 means the central 20%
of the field is used to fit and calculate the “top”, while the region on either side of the
central 20% between the central 80% is used to calculate a slope on either side using
linear regression.

278 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Note: While the “top” is always calculated, it will not be displayed in plots if the
is_FFF parameter is false.

invert — Whether to invert the image. Setting this to True will override the default
inversion. This is useful if pylinac’s automatic inversion is incorrect.

is_FFF - This is a flag to display the “top” calculation and slopes on either side of
the field.

penumbra — A tuple of (lower, higher) % of the penumbra to calculate. E.g. (20,
80) will calculate the penumbra width at 20% and 80%.

Note: The exact height of the penumbra depends on the edge detection method.
E.g. FWHM will result in calculating penumbra at 20/80% of the field max, but if
something like inflection is used, the penumbra height will be 20/50*%100*inflection
height and 80/50*100*inflection height.

ground — Whether to ground the profile (set min value to 0). Helpful most of the
time.

interpolation - Interpolation technique to use. See Interpolation.

interpolation_resolution_mm — The resolution that the interpolation will
scale to. E.g. if the native dpmm is 2 and the resolution is set to 0.1mm the data will
be interpolated to have a new dpmm of 10 (1/0.1).

normalization_method — How to pick the point to normalize the data to. See
Normalization.

edge_detection_method — The method by which to detect the field edge.
FWHM is reasonable most of the time except for FFF beams. Inflection-derivative
will use the max gradient to determine the field edge. Note that this may not be the
50% height. In fact, for FFF beams it shouldn’t be. Inflection methods are better for
FFF and other unusual beam shapes. See Edge detection.

edge_smoothing_ratio — The ratio of the length of the values to use as the
sigma for a Gaussian filter applied before searching for the inflection. E.g. 0.005 with
a profile of 1000 points will result in a sigma of 5. This helps make the inflection
point detection more robust to noise. Increase for noisy data.

hill window_ratio — The ratio of the field size to use as the window to fit
the Hill function. E.g. 0.2 will using a window centered about each edge with a
width of 20% the size of the field width. Only applies when the edge detection is
INFLECTION_HILL.

kwargs — Use these to pass parameters to custom protocol functions. See Creating
& Using Custom Protocols.

results (as_str=True) — str
Get the results of the analysis.

Parameters as_str — If True, return a simple string. If False, return a list of each line of
text.

results_data (as_dict: bool = False) — Union[pylinac.field_analysis.FieldResult, dict]
Present the results data and metadata as a dataclass or dict. The default return type is a dataclass.

5.14. Field Analysis

279

pylinac Documentation, Release 3.8.2

publish_pdf (filename: str, notes: Union[str, list] = None, open_file: bool = False, metadata: dict =

None, logo: Union[pathlib.Path, str, None] = None) — None
Publish (print) a PDF containing the analysis, images, and quantitative results.

Parameters
e filename ((str, file-like object })— The file to write the results to.

* notes (str, list of strings) — Text; if str, prints single line. If list of
strings, each list item is printed on its own line.

* open_file (bool)— Whether to open the file using the default program after cre-
ation.

* metadata (dict) — Extra stream to be passed and shown in the PDF. The key
and value will be shown with a colon. E.g. passing {‘Author’: ‘James’, ‘Unit’:
‘TrueBeam’ } would result in text in the PDF like: ———— Author: James Unit:
TrueBeam

* logo (Path, str)— A custom logo to use in the PDF report. If nothing is passed,
the default pylinac logo is used.

plot_analyzed_image (show: bool = True, grid: bool = True, split_plots: bool = False,
**plt_kwargs) — Tuple[List[matplotlib.figure.Figure], List[str]]
Plot the analyzed image. Shows parameters such as flatness & symmetry.

Parameters
* show — Whether to show the plot when called.
¢ grid — Whether to show a grid on the profile plots

* split_plots (bool) — Whether to plot the image and profiles on individual fig-
ures. Useful for saving individual plots.

* plt_kwargs (dict) - Keyword args passed to the plt.figure() method. Allows one
to set things like figure size.

save_analyzed_image (filename: Union[None, str, pathlib.Path, BinarylO] = None, split_plots:
bool = False, to_streams: bool = False, **kwargs) — Union[List[str],

Dict[str, BinarylO], None]
Save the analyzed image to disk or to stream. Kwargs are passed to plt.savefig()

Parameters

* split_plots (bool) - If split_plots is True, multiple files will be created that ap-
pend a name. E.g. my_file.png will become my_file_image.png, my_file_vertical.png,
etc. If to_streams is False, a list of new filenames will be returned

* to_streams (bool) — This only matters if split_plots is True. If both of these are
true, multiple streams will be created and returned as a dict.

280 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class pylinac.field_analysis.FieldResult (protocol: pylinac.field_analysis. Protocol,
protocol_results: dict, centering_method:
pylinac.field_analysis.Centering,
normalization_method:
pylinac.core.profile. Normalization, interpola-
tion_method: pylinac.core.profile.Interpolation,
edge_detection_method:
pylinac.core.profile.Edge, top_penumbra_mm:

float, bottom_penumbra_mm: float,
left_penumbra_mm: float, right_penumbra_mm:
float, geometric_center_index_x_y: Tu-

ple[float, float], beam_center_index_x_y:
Tuple[float, float], field_size_vertical_mm:

float, field_size_horizontal_mm: float,
beam_center_to_top_mm: float,
beam_center_to_bottom_mm: float,
beam_center_to_left_mm: float,
beam_center_to_right_mm: float,
cax_to_top_mm: float, cax_to_bottom_mm:

float, cax_to_left_mm: float, cax_to_right_mm:
float, top_position_index_x_y: Tuple[float,
float], top_horizontal_distance_from_cax_mm:
float, top_vertical_distance_from_cax_mm: float,
top_horizontal_distance_from_beam_center_mm:
float, top_vertical_distance_from_beam_center_mm:

float, left_slope_percent_mm: float,
right_slope_percent_mm: float,
top_slope_percent_mm: float, bot-
tom_slope_percent_mm: float,
top_penumbra_percent_mm: float = 0,
bottom_penumbra_percent_mm: float =
0, left_penumbra_percent_mm: float = 0,

right_penumbra_percent_mm: float = 0, cen-
tral_roi_mean: float = 0, central_roi_max: float
= 0, central_roi_std: float = 0, central_roi_min:
float = 0)

Bases: pylinac.core.utilities.ResultBase

This class should not be called directly. It is returned by the results_data () method. Itis a dataclass under
the hood and thus comes with all the dunder magic.

Use the following attributes as normal class attributes.

In addition to the below attrs, custom protocol data will also be attached under the protocol_results attras
a dictionary with keys like so: <protocol name>_vertical and <protocol name>_horizontal
for each protocol item.

E.g. a protocol item of symmetry will result in symmetry_vertical and symmetry_horizontal.
protocol = None

protocol_results = None

centering method = None

normalization method = None

interpolation_method None

5.14. Field Analysis 281

pylinac Documentation, Release 3.8.2

edge_detection_method = None
top_penumbra_mm = None

bottom penumbra mm = None
left_penumbra_mm = None

right_penumbra mm = None
geometric_center_index x y = None

beam center_ index_x_y = None

field size vertical mm = None

field size_horizontal _mm = None

beam center_ to_top _mm = None

beam center to bottom mm = None

beam center to_left mm = None

beam_center_ to_right_mm = None
cax_to_top_mm = None

cax_to bottom mm = None

cax_to_left _mm = None

cax_to_right _mm = None
top_position_index_x_y = None
top_horizontal_distance_from _cax mm = None
top_vertical_distance_from cax mm = None
top_horizontal_ distance_from beam center mm = None
top_vertical_distance_from_beam center_mm = None
left_slope_percent_mm = None
right_slope_percent_mm = None
top_slope_percent_mm = None
bottom_slope_percent_mm = None
top_penumbra_percent_mm = 0

bottom penumbra percent_mm = 0
left_penumbra_ percent_mm = 0
right_penumbra_ percent_mm = 0

central roi _mean = 0

central roi_max = 0
central roi _std = 0
central roi min = 0

282 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class pylinac.field_analysis.Device
Bases: enum.Enum

2D array device Enum.
PROFILER = {'detector spacing (mm)': 5, 'device': <class 'pylinac.core.io.SNCProfile

class pylinac.field_analysis.Protocol
Bases: enum.Enum

Protocols to analyze additional metrics of the field. See Protocol Definitions

NONE = {}

VARIAN = {'flatness': {'calc': <function flatness_dose_difference>, 'plot': <functi
SIEMENS = {'flatness': {'calc': <function flatness_dose_difference>, 'plot': <funct
ELEKTA = {'flatness': {'calc': <function flatness_dose_ratio>, 'plot': <function pl

class pylinac.field_analysis.Centering
Bases: enum.Enum

See Centering

MANUAL = 'Manual'

BEAM CENTER = 'Beam center'
GEOMETRIC_CENTER = 'Geometric center'

class pylinac.field _analysis.Interpolation
Bases: enum.Enum

Interpolation Enum
NONE = None
LINEAR = 'Linear'
SPLINE = 'Spline'

class pylinac.field_analysis.Normalization
Bases: enum.Enum

Normalization method Enum

NONE = None

GEOMETRIC_CENTER = 'Geometric center'
BEAM_CENTER = 'Beam center'
MAX = 'Max'

class pylinac.field_analysis.Edge
Bases: enum.Enum

Edge detection Enum

FWHM = 'FWHM'
INFLECTION_ DERIVATIVE = 'Inflection Derivative'
INFLECTION_HILL = 'Inflection Hill'

5.14. Field Analysis 283

pylinac Documentation, Release 3.8.2

Supporting Classes

You generally won’t have to interface with these unless you’re doing advanced behavior.

pylinac.field_analysis.flatness_dose_difference (profile:
pylinac.core.profile.SingleProfile,
in_field_ratio: float = 0.8, **kwargs)

. — float
The Varian specification for calculating flatness. See Varian.

pylinac.field_analysis.flatness_dose_ratio (profile: pylinac.core.profile.SingleProfile,

in_field_ratio: float = 0.8, **kwargs) — float
The Elekta specification for calculating flatness. See Elekta.

pylinac.field_analysis.symmetry point_difference (profile:
pylinac.core.profile.SingleProfile,
in_field_ratio: float, **kwargs) —

float
Calculation of symmetry by way of point difference equidistant from the CAX. See Varian.
A negative value means the right side is higher. A positive value means the left side is higher.

pylinac.field_analysis.symmetry_ area (profile: pylinac.core.profile.SingleProfile,

in_field_ratio: float, **kwargs) — float
Ratio of the area under the left and right profile segments. See Siemens.

A negative value indicates the right side is higher; a positive value indicates the left side is higher.

pylinac.field_analysis.symmetry pdq iec (profile: pylinac.core.profile.SingleProfile,
in_field_ratio: float, **kwargs) — float
Symmetry calculation by way of PDQ IEC. See Elekta.

A negative value means the right side is higher. A positive value means the left side is higher.

5.15 Core Modules

The following is the API documentation for the core modules of pylinac. These can be used directly, or as the base for
mixin classes or methods.

5.15.1 Image Module

This module holds classes for image loading and manipulation.

pylinac.core.image.equate_images (imagel: Union[Dicomlmage, Arraylmage, Filelm-
age, LinacDicomlmage], image2: Union[Dicomlmage,
Arraylmage, FileImage, LinacDicomlmage])
— Tuple[Union[pylinac.core.image.DicomImage,
pylinac.core.image.Arraylmage,
pylinac.core.image.FileImage,
pylinac.core.image.LinacDicomImage],
Union[pylinac.core.image.DicomImage,
pylinac.core.image.Arraylmage,
pylinac.core.image.FileImage,
pylinac.core.image.LinacDicomImage]]

Crop and resize two images to make them:

* The same pixel dimensions

284 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

¢ The same DPI

The usefulness of the function comes when trying to compare images from different sources. The best example
is calculating gamma on a machine log fluence and EPID image. The physical and pixel dimensions must be

normalized, the SID normalized
Parameters
* imagel ({ArrayImage, DicomImage, FileImage})— Must have DPI and SID.
* image2 ({ArrayImage, DicomImage, F'ileImage})— Must have DPI and SID.
Returns
e imagel (ArrayImage)
* image2 (ArrayImage) — The returns are new instances of Images.

pylinac.core.image.is_image (path: Union[str, _io.ByteslO, Dicomlmage, Arraylmage, Filelmage,
LinacDicomImage, numpy.ndarray]) — bool
Determine whether the path is a valid image file.

Returns
Return type bool

pylinac.core.image.retrieve_image_files (path: str) — List[str]
Retrieve the file names of all the valid image files in the path.

Returns Contains strings pointing to valid image paths.
Return type list

pylinac.core.image.load (path: Union[str, pathlib.Path, Dicomlmage, Arraylmage, Filelm-
age, LinacDicomlmage, numpy.ndarray, BinarylO], **kwargs) —
Union[pylinac.core.image.Dicomlmage, pylinac.core.image.Arraylmage,

pylinac.core.image.FileImage, pylinac.core.image.LinacDicomImage]
Load a DICOM image, JPG/TIF/BMP image, or numpy 2D array.

Parameters

» path (str, file-object)- The path to the image file or data stream or array.

* kwargs —See I'1 leImage, DicomImage, or ArrayImage for keyword arguments.
Returns Return type depends on input image.

Return type FileImage, ArrayImage,or DicomImage

Examples

Load an image from a file and then apply a filter:

>>> from pylinac.core.image import load

>>> my_image = r"C:\QA\image.tif"

>>> img = load(my_image) # returns a Filelmage
>>> img.filter (5)

Loading from an array is just like loading from a file:

>>> arr = np.arange(36) .reshape (6, 6)
>>> img

load (arr) # returns an ArrayImage

5.15. Core Modules

285

pylinac Documentation, Release 3.8.2

pylinac.core.image.load_url (url: Str, progress_bar: bool = True,
*tkwargs) — Union[pylinac.core.image.DicomImage,
pylinac.core.image.Arraylmage, pylinac.core.image.FileImage,

pylinac.core.image.LinacDicomImage]
Load an image from a URL.

Parameters

* url (str)— A string pointing to a valid URL that points to a file.

Note: For some images (e.g. Github), the raw binary URL must be used, not simply the
basic link.

* progress_bar (bool)— Whether to display a progress bar of download status.

pylinac.core.image.load _multiples (image._file_list: Sequence, method: str =
‘mean’, stretch_each: bool = True, **kwargs)
— Union[pylinac.core.image.DicomImage,

pylinac.core.image.Arraylmage,

pylinac.core.image.FileImage,

pylinac.core.image.LinacDicomImage]
Combine multiple image files into one superimposed image.

Parameters
* image_file_list (1ist)— A listof the files to be superimposed.

* method ({ 'mean’, 'max', 'sum'})— A string specifying how the image values
should be combined.

* stretch_each (bool)-— Whether to normalize the images being combined by stretch-
ing their high/low values to the same values across images.

* kwargs — Further keyword arguments are passed to the load function and stretch func-

tion.

Examples

Load multiple images:

>>> from pylinac.core.image import load _multiples
>>> paths = ['starshotl.tif', 'starshot2.tif']
>>> superimposed_img = load_multiples (paths)

class pylinac.core.image.BaseImage (path: Union[str, pathlib.Path, _io.ByteslO, Dicomlm-
age, Arraylmage, Filelmage, LinacDicomlmage,

numpy.ndarray, _io.BufferedReader])
Bases: object

Base class for the Image classes.

path
The path to the image file.

Type str

array
The actual image pixel array.

Type numpy.ndarray

286 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Parameters path (str)— The path to the image.

classmethod from multiples (filelist: List[str], method: str = ’'mean’, stretch: bool =
True, **kwargs) — Union[pylinac.core.image.DicomImage,
pylinac.core.image.Arraylmage, pylinac.core.image.FileImage,

pylinac.core.image.LinacDicomImage]
Load an instance from multiple image items. See 1oad_multiples ().

center
Return the center position of the image array as a Point. Even-length arrays will return the midpoint
between central two indices. Odd will return the central index.

physical_shape
The physical size of the image in mm.

date_created (format: str = "%A, %B %d, %Y’) — str
The date the file was created. Tries DICOM data before falling back on OS timestamp

plot (ax: matplotlib.axes._axes.Axes = None, show: bool = True, clear_fig: bool = False, **kwargs)

— matplotlib.axes._axes.Axes
Plot the image.

Parameters

* ax (matplotlib.Axes instance) — The axis to plot the image to. If None,
creates a new figure.

* show (bool) — Whether to actually show the image. Set to false when plotting
multiple items.

* clear_f£fig (bool)— Whether to clear the prior items on the figure before plotting.
e kwargs — kwargs passed to plt.imshow()

filter (size: Union[float, int] = 0.05, kind: str = 'median’) — None
Filter the profile in place.

Parameters

e size (int, float) - Size of the median filter to apply. If a float, the size is the
ratio of the length. Must be in the range 0-1. E.g. if size=0.1 for a 1000-element
array, the filter will be 100 elements. If an int, the filter is the size passed.

* kind ({ 'median', 'gaussian'})— The kind of filter to apply. If gaussian,
size is the sigma value.

crop (pixels: int = 15, edges: Tuple[str, ...] = (’'top’, "bottom’, ’left’, 'right’)) — None
Removes pixels on all edges of the image in-place.

Parameters
* pixels (int)— Number of pixels to cut off all sides of the image.

* edges (tuple)— Which edges to remove from. Can be any combination of the four
edges.

flipud () — None
Flip the image array upside down in-place. Wrapper for np.flipud()

fliplr () — None
Flip the image array upside down in-place. Wrapper for np.fliplr()

invert () — None
Invert (imcomplement) the image.

5.15. Core Modules 287

pylinac Documentation, Release 3.8.2

roll (direction: str = ’x’, amount: int = 1) — None
Roll the image array around in-place. Wrapper for np.roll().

Parameters
e direction ({'x', 'y'})-The axis to roll over.
¢ amount (int)— The amount of elements to roll over.

rot90 (n: int = 1) — None
Wrapper for numpy.rot90; rotate the array by 90 degrees CCW n times.

threshold (threshold: float, kind: str = "high’) — None
Apply a high- or low-pass threshold filter.

Parameters
¢ threshold (int) — The cutoff value.

* kind (str) - If high (default), will apply a high-pass threshold. All values above
the cutoff are left as-is. Remaining points are set to 0. If 1ow, will apply a low-pass

threshold.
as_binary (threshold: int) — Union[pylinac.core.image.DicomImage,
pylinac.core.image.Arraylmage, pylinac.core.image.FileImage,

pylinac.core.image.LinacDicomImage]
Return a binary (black & white) image based on the given threshold.

Parameters threshold (int, float) — The threshold value. If the value is above or
equal to the threshold it is set to 1, otherwise to 0.

Returns
Return type Arraylmage

dist2edge_min (point: Union[pylinac.core.geometry.Point, Tuple]) — float
Calculates distance from given point to the closest edge.

Parameters point (geometry.Point, tuple)-—
Returns
Return type float

ground () — float
Ground the profile in place such that the lowest value is 0.

Note: This will also “ground” profiles that are negative or partially-negative. For such profiles, be careful
that this is the behavior you desire.

Returns The amount subtracted from the image.
Return type float
normalize (norm_val: Union[str, float] = 'max’) — None
Normalize the image values in place to the given value.

Parameters norm_val (str, number) — If a string, must be ‘max’, which normalizes
the values to the maximum value. If a number, normalizes all values to that number.

288 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

check_inversion (box_size: int = 20, position: (<class 'float’>, <class 'float’>) = (0.0, 0.0)) —

None
Check the image for inversion by sampling the 4 image corners. If the average value of the four corners

is above the average pixel value, then it is very likely inverted.
Parameters
* box_size (int) - The size in pixels of the corner box to detect inversion.
* position (2-element sequence)— The location of the sampling boxes.

check_inversion_by_histogram (percentiles: (<class float’>, <class 'float’>, <class 'float’>)
= (5, 50, 95)) — bool
Check the inversion of the image using histogram analysis. The assumption is that the image is mostly

background-like values and that there is a relatively small amount of dose getting to the image (e.g. a
picket fence image). This function looks at the distance from one percentile to another to determine if the
image should be inverted.

Parameters percentiles (3-element tuple) — The 3 percentiles to compare. De-
fault is (5, 50, 95). Recommend using (X, 50, y). To invert the other way (where pixel
value is decreasing with dose, reverse the percentiles, e.g. (95, 50, 5).

Returns bool
Return type Whether an inversion was performed.

gamma (comparison_image: Union[Dicomlmage, Arraylmage, Filelmage, LinacDicomImage], doseTA:
float = 1, distTA: float = 1, threshold: float = 0.1, ground: bool = True, normalize: bool = True)

— numpy.ndarray
Calculate the gamma between the current image (reference) and a comparison image.

New in version 1.2.

The gamma calculation is based on Bakai et al eq.6, which is a quicker alternative to the standard Low
gamma equation.

Parameters

* comparison_image ({ArrayImage, DicomImage, or FileImage}) — The
comparison image. The image must have the same DPI/DPMM to be comparable.
The size of the images must also be the same.

* doseTA (int, float)- Dose-to-agreement in percent; e.g. 2 is 2%.
* distTA (int, float)- Distance-to-agreement in mm.

* threshold (float)—The dose threshold percentage of the maximum dose, below
which is not analyzed. Must be between 0 and 1.

* ground (bool) — Whether to “ground” the image values. If true, this sets both
datasets to have the minimum value at 0. This can fix offset errors in the data.

* normalize (bool)— Whether to normalize the images. This sets the max value of
each image to the same value.

Returns gamma_map — The calculated gamma map.
Return type numpy.ndarray

See also:

equate_images ()

class pylinac.core.image.XIM (file_path: Union[str, pathlib.Path], read_pixels: bool = True)
Bases: pylinac.core.image.BaseImage

5.15. Core Modules 289

http://iopscience.iop.org/0031-9155/48/21/006/

pylinac Documentation, Release 3.8.2

A class to open, read, and/or export an .xim image, Varian’s custom image format which is 99.999% PNG

This had inspiration from a number of places: - https:/gist.github.com/1328/7da697c71f9c4efl2ele -
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7 - https://www.mathworks.com/matlabcentral/
answers/419228-how-to-write-for-loop-and-execute-data - https://www.w3.org/TR/PNG-Filters.html - https:
//bitbucket.org/dmoderesearchtools/ximreader/src/master/

Parameters
» file path - The path to the file of interest.

* read_pixels — Whether to read and parse the pixel information. Doing so is quite
slow. Set this to false if, e.g., you are searching for images only via tags or doing a
pre-filtering of image selection.

array = None
properties = None

save_as (file: str, format: Optional[str] = None) — None
Save the image to a NORMAL format. PNG is highly suggested. Accepts any format supported by Pillow.
Ironically, an equivalent PNG image (w/ metadata) is ~50% smaller than an .xim image.

Warning: Any format other than PNG will not include the properties included in the .xim image!

Parameters
e file — The file to save the image to. E.g. my_xim.png

* format — The format to save the image as. Uses the Pillow logic, which will infer
the format if the file name has one.

class pylinac.core.image.DicomImage (path: Union|str, pathlib.Path, _io.ByteslO,

_io.BufferedReader], * dtype=None, dpi: float =

None, sid: float = None, sad: float = 1000)
Bases: pylinac.core.image.BaseImage

An image from a DICOM RTImage file.

metadata
The dataset of the file as returned by pydicom without pixel data.

Type pydicom Dataset

Parameters
* path (str, file-object)— The path to the file or the data stream.

* dtype (dtype, None, optional)— The data type to cast the image data as. If
None, will use whatever raw image format is.

e dpi (int, float)- The dots-per-inch of the image, defined at isocenter.

Note: If a DPItagis found in the image, that value will override the parameter, otherwise
this one will be used.

* sid(int, float)- The Source-to-Image distance in mm.

Chapter 5. Contributing

https://gist.github.com/1328/7da697c71f9c4ef12e1e
https://medium.com/@duhroach/how-png-works-f1174e3cc7b7
https://www.mathworks.com/matlabcentral/answers/419228-how-to-write-for-loop-and-execute-data
https://www.mathworks.com/matlabcentral/answers/419228-how-to-write-for-loop-and-execute-data
https://www.w3.org/TR/PNG-Filters.html
https://bitbucket.org/dmoderesearchtools/ximreader/src/master/
https://bitbucket.org/dmoderesearchtools/ximreader/src/master/

pylinac Documentation, Release 3.8.2

save (filename: Union[str, pathlib.Path]) — Union[str, pathlib.Path]
Save the image instance back out to a .dcm file.

Returns
Return type A string pointing to the new filename.
sid
The Source-to-Image in mm.
sad
The source to axis (iso) in mm
dpi
The dots-per-inch of the image, defined at isocenter.
dpmm
The Dots-per-mm of the image, defined at isocenter. E.g. if an EPID image is taken at 150cm SID, the

dpmm will scale back to 100cm.

cax
The position of the beam central axis. If no DICOM translation tags are found then the
center is returned. Uses this tag: https://dicom.innolitics.com/ciods/rt-beams-delivery-instruction/
rt-beams-delivery-instruction/00741020/00741030/3002000d

class pylinac.core.image.LinacDicomImage (path: Union[str, pathlib.Path], use_filenames:

bool = False, **kwargs)
Bases: pylinac.core.image.DicomImage

DICOM image taken on a linac. Also allows passing of gantry/coll/couch values via the filename.

gantry_angle
Gantry angle of the irradiation.

collimator_angle
Collimator angle of the irradiation.

couch_angle
Couch angle of the irradiation.

class pylinac.core.image.FileImage (path: Union[str, pathlib.Path, BinarylO], * dpi: Op-

tional[float] = None, sid: Optional[float] = None, dtype:

Optional[numpy.dtype] = None)
Bases: pylinac.core.image.BaseImage

An image from a “regular” file (.tif, .jpg, .bmp).

info
The info dictionary as generated by Pillow.

Type dict
sid
The SID value as passed in upon construction.

Type float

Parameters
* path (str, file-object)— The path to the file or a data stream.

e dpi (int, float)- The dots-per-inch of the image, defined at isocenter.

5.15.

Core Modules 291

https://dicom.innolitics.com/ciods/rt-beams-delivery-instruction/rt-beams-delivery-instruction/00741020/00741030/3002000d
https://dicom.innolitics.com/ciods/rt-beams-delivery-instruction/rt-beams-delivery-instruction/00741020/00741030/3002000d

pylinac Documentation, Release 3.8.2

Note: If a DPItagis found in the image, that value will override the parameter, otherwise
this one will be used.

* sid (int, float)- The Source-to-Image distance in mm.
e dtype (numpy. dtype) — The data type to cast the array as.
dpi
The dots-per-inch of the image, defined at isocenter.

dpmm
The Dots-per-mm of the image, defined at isocenter. E.g. if an EPID image is taken at 150cm SID, the
dpmm will scale back to 100cm.

class pylinac.core.image.ArrayImage (array: numpy.array, *, dpi: float = None, sid: float =

None, dtype=None)
Bases: pylinac.core.image.BaseImage

An image constructed solely from a numpy array.
Parameters
* array (numpy.ndarray) — The image array.

* dpi (int, float)- The dots-per-inch of the image, defined at isocenter.

Note: If a DPI tag is found in the image, that value will override the parameter, otherwise
this one will be used.

e sid (int, float)- The Source-to-Image distance in mm.

* dtype (dtype, None, optional) - The data type to cast the image data as. If
None, will use whatever raw image format is.

dpmm
The Dots-per-mm of the image, defined at isocenter. E.g. if an EPID image is taken at 150cm SID, the
dpmm will scale back to 100cm.
dpi
The dots-per-inch of the image, defined at isocenter.
class pylinac.core.image.DicomImageStack (folder: Union[str, pathlib.Path], dtype: Op-

tional[numpy.dtype] = None, min_number: int =

39, check_uid: bool = True)
Bases: object

A class that loads and holds a stack of DICOM images (e.g. a CT dataset). The class can take a folder or zip file
and will read CT images. The images must all be the same size. Supports indexing to individual images.

images
Holds instances of DicomImage. Can be accessed via index; i.e. self[0] == self.images[0].

Type list
Examples

Load a folder of Dicom images >>> from pylinac import image >>> img_folder = r’folder/qa/cbct/june” >>>
dem_stack = image.DicomImageStack(img_folder) # loads and sorts the images >>> dcm_stack.plot(3) # plot

292 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

the 3rd image

Load a zip archive >>> img_folder_zip = r”archive/qa/cbct/june.zip” # save space and zip your CBCTs >>>
dem_stack = image.DicomImageStack.from_zip(img_folder_zip)

Load as a certain data type >>> dem_stack_uint32 = image.DicomImageStack(img_folder, dtype=np.uint32)
Load a folder with DICOM CT images.
Parameters
* folder (str) - Path to the folder.

* dtype (dtype, None, optional) - The data type to cast the image data as. If
None, will use whatever raw image format is.

classmethod from_zip (zip_path: Union[str, pathlib.Path], dtype: Optional[numpy.dtype] =
None)
Load a DICOM ZIP archive.
Parameters
* zip_path (str) - Path to the ZIP archive.

* dtype (dtype, None, optional)- The datatype to castthe image data as. If
None, will use whatever raw image format is.

static is_image_slice (file: Union/str, pathlib.Path]) — bool
Test if the file is a CT Image storage DICOM file.

plot (slice: int = 0) — None
Plot a slice of the DICOM dataset.

Parameters slice (int) - The slice to plot.

metadata
The metadata of the first image; shortcut attribute. Only attributes that are common throughout the stack
should be used, otherwise the individual image metadata should be used.

pylinac.core.image.gamma_2d (reference: numpy.ndarray, evaluation: numpy.ndarray,
dose_to_agreement: float = 1, distance_to_agreement: int =
1, gamma_cap_value: float = 2, global_dose: bool = True,

dose_threshold: float = 5, fill_value: float = nan) — numpy.ndarray
Compute a 2D gamma of two 2D numpy arrays. This does NOT do size or spatial resolution checking. It

performs an element-by-element evaluation. It is the responsibility of the caller to ensure the reference and
evaluation have comparable spatial resolution.

The algorithm follows Table I of D. Low’s 2004 paper: Evaluation of the gamma dose distribution comparison
method: https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1118/1.1598711

This is similar to the gamma_1d function for profiles, except we must search a 2D grid around the reference
point.

Parameters
* reference - The reference 2D array.
* evaluation — The evaluation 2D array.

* dose_to_agreement — The dose to agreement in %. E.g. 1 is 1% of global reference
max dose.

* distance_to_agreement — The distance to agreement in elements. E.g. if the
value is 4 this means 4 elements from the reference point under calculation. Must be >0

5.15. Core Modules 293

https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1118/1.1598711

pylinac Documentation, Release 3.8.2

* gamma_cap_value — The value to cap the gamma at. E.g. a gamma of 5.3 will get
capped to 2. Useful for displaying data with a consistent range.

* global_dose — Whether to evaluate the dose to agreement threshold based on the
global max or the dose point under evaluation.

¢ dose_threshold — The dose threshold as a number between 0 and 100 of the % of
max dose under which a gamma is not calculated. This is not affected by the global/local
dose normalization and the threshold value is evaluated against the global max dose,
period.

* £i11l wvalue — The value to give pixels that were not calculated because they were
under the dose threshold. Default is NaN, but another option would be 0. If NaN, allows
the user to calculate mean/median gamma over just the evaluated portion and not be
skewed by 0’s that should not be considered.

5.15.2 Geometry Module

Module for classes that represent common geometric objects or patterns.

pylinac.core.geometry.tan (degrees: float) — float
Calculate the tangent of the given degrees.

pylinac.core.geometry.cos (degrees: float) — float
Calculate the cosine of the given degrees.

pylinac.core.geometry.sin (degrees: float) — float
Calculate the sine of the given degrees.

class pylinac.core.geometry.Point (x: Unionffloat, tuple, pylinac.core.geometry.Point] = 0, y:
float = 0, z: float = 0, idx: Optional[int] = None, value:
Optional[float] = None, as_int: bool = False)
Bases: object

A geometric point with x, y, and z coordinates/attributes.
Parameters

* x (number-1like, Point, iterable)— x-coordinate or iterable type containing
all coordinates. If iterable, values are assumed to be in order: (X,y,z).

* y(number-like, optional) - y-coordinate

* idx (int, optional) — Index of point. Useful for sequential coordinates; e.g. a
point on a circle profile is sometimes easier to describe in terms of its index rather than
X,y coords.

* value (number-1like, optional)— value at point location (e.g. pixel value of an
image)

* as_int (boolean) - If True, coordinates are converted to integers.

distance_to (thing: Union[pylinac.core.geometry.Point, pylinac.core.geometry.Circle]) — float
Calculate the distance to the given point.

Parameters thing (Circle, Point, 2 element iterable)- The other thing to
calculate distance to.

as_array (only_coords: bool = True) — numpy.array
Return the point as a numpy array.

294 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class pylinac.core.geometry.Cirecle (center_point: Union[pylinac.core.geometry.Point, Iter-
able] = (0, 0), radius: float = 0)
Bases: object

A geometric circle with center Point, radius, and diameter.
Parameters
* center_point (Point, optional)- Center point of the wobble circle.
e radius (float, optional)- Radius of the wobble circle.

diameter
Get the diameter of the circle.

plot2axes (axes: matplotlib.axes._axes.Axes, edgecolor: str = ’black’, fill: bool = False) — None
Plot the Circle on the axes.

Parameters
e axes (matplotlib.axes.Axes)— An MPL axes to plot to.
* edgecolor (str)— The color of the circle.
e £ill (bool)— Whether to fill the circle with color or leave hollow.

class pylinac.core.geometry.Vector (x: float = 0, y: float = 0, z: float = 0)
Bases: object

A vector with X, y, and z coordinates.

as_scalar () — float
Return the scalar equivalent of the vector.

distance_to (thing: Union[pylinac.core.geometry.Circle, pylinac.core.geometry.Point]) — float
Calculate the distance to the given point.

Parameters thing (Circle, Point, 2 element iterable) - The other point to
calculate distance to.

pylinac.core.geometry.vector_is_close (vectorl: pylinac.core.geometry.Vector, vector2:
pylinac.core.geometry.Vector, delta: float = 0.1) —

bool
Determine if two vectors are with delta of each other; this is a simple coordinate comparison check.

class pylinac.core.geometry.Line (pointl: Union[pylinac.core.geometry.Point, Tuple[float,
float]], point2: Union[pylinac.core.geometry.Point, Tu-
ple[float, float]])

Bases: object

A line that is represented by two points or by m*x+b.

Notes
Calculations of slope, etc are from here: http://en.wikipedia.org/wiki/Linear_equation and here: http://www.
mathsisfun.com/algebra/line-equation-2points.html
Parameters
* pointl (Point) - One point of the line

* point2 (Point) - Second point along the line.

5.15. Core Modules 295

http://en.wikipedia.org/wiki/Linear_equation
http://www.mathsisfun.com/algebra/line-equation-2points.html
http://www.mathsisfun.com/algebra/line-equation-2points.html

pylinac Documentation, Release 3.8.2

" Return the slope of the line.

m = (yl - y2)/(x1 - x2)

From: http://www.purplemath.com/modules/slope.htm
b

Return the y-intercept of the line.

b=y - m*x
y (x) — float

Return y-value along line at position x.

x (y) — float
Return x-value along line at position y.

center
Return the center of the line as a Point.

length
Return length of the line, if finite.

distance_to (point: pylinac.core.geometry.Point) — float
Calculate the minimum distance from the line to a point.

Equations are from here: http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html #14
Parameters point (Point, iterable)- The point to calculate distance to.

plot2axes (axes: matplotlib.axes._axes.Axes, width: float = 1, color: str = 'w’) — None
Plot the line to an axes.

Parameters
* axes (matplotlib.axes.Axes)— An MPL axes to plot to.
e color (str)— The color of the line.

class pylinac.core.geometry.Rectangle (width: float, height: float, center:
Union[pylinac.core.geometry.Point, Tuple], as_int:

bool = False)
Bases: object

A rectangle with width, height, center Point, top-left corner Point, and bottom-left corner Point.
Parameters
* width (number) — Width of the rectangle. Must be positive
* height (number) — Height of the rectangle. Must be positive.
* center (Point, iterable, optional)- Center point of rectangle.

* as_int (bool)-If False (default), inputs are left as-is. If True, all inputs are converted
to integers.

br corner
The location of the bottom right corner.

bl corner
The location of the bottom left corner.

tl_corner
The location of the top left corner.

296 Chapter 5. Contributing

http://www.purplemath.com/modules/slope.htm
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

pylinac Documentation, Release 3.8.2

tr_corner

The location of the top right corner.

plot2axes (axes: matplotlib.axes._axes.Axes, edgecolor: str = ’black’, angle: float = 0.0, fill: bool =

False, alpha: float = 1, facecolor: str = ’g’, label=None)
Plot the Rectangle to the axes.

Parameters

* axes (matplotlib.axes.Axes)— An MPL axes to plot to.
¢ edgecolor (str) - The color of the circle.
* angle (float)— Angle of the rectangle.

e £i1l (bool)— Whether to fill the rectangle with color or leave hollow.

5.15.3 Profile Module

Module of objects that resemble or contain a profile, i.e. a 1 or 2-D f(x) representation.

pylinac.core.profile.gamma_1ld (reference: numpy.ndarray, evaluation: numpy.ndarray,
dose_to_agreement: float = 1, distance_to_agreement: int
= 1, gamma_cap_value: float = 2, global_dose: bool =

True, dose_threshold: float = 5, fill_value: float = nan) —
numpy.ndarray

Perform a 1D gamma of two 1D profiles/arrays. This does NOT check lengths or spatial consistency. It performs
an element-by-element evaluation. It is the responsibility of the caller to ensure the reference and evaluation
have comparable spatial resolution.

The algorithm follows Table I of D. Low’s 2004 paper: Evaluation of the gamma dose distribution comparison
method: https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1118/1.1598711

Parameters

reference — The reference profile.
evaluation — The evaluation profile.

dose_to_agreement — The dose to agreement in %. E.g. 1 is 1% of global reference
max dose.

distance_to_agreement — The distance to agreement in elements. E.g. if the
value is 4 this means 4 elements from the reference point under calculation. Must be >0

gamma_cap_value — The value to cap the gamma at. E.g. a gamma of 5.3 will get
capped to 2. Useful for displaying data with a consistent range.

global_dose — Whether to evaluate the dose to agreement threshold based on the
global max or the dose point under evaluation.

dose_threshold — The dose threshold as a number between 0 and 100 of the % of
max dose under which a gamma is not calculated. This is not affected by the global/local
dose normalization and the threshold value is evaluated against the global max dose,
period.

£ill_value - The value to give pixels that were not calculated because they were
under the dose threshold. Default is NaN, but another option would be 0. If NaN, allows
the user to calculate mean/median gamma over just the evaluated portion and not be
skewed by 0’s that should not be considered.

5.15. Core Modules

297

https://aapm.onlinelibrary.wiley.com/doi/epdf/10.1118/1.1598711

pylinac Documentation, Release 3.8.2

pylinac.core.profile.stretch (array: numpy.ndarray, min: int = 0, max: int = 1, fill_dtype: Op-
tional[numpy.dtype] = None) — numpy.ndarray
‘Stretch’ the profile to the fit a new min and max value and interpolate in between. From: http://www.labri.fr/

perso/nrougier/teaching/numpy. 100/ exercise #17
Parameters
* array (numpy.ndarray) — The numpy array to stretch.
e min (number) — The new minimum of the values.
* max (number) — The new maximum value.

e £fill dtype (numpy data type)-If None (default), the array will be stretched to
the passed min and max. If a numpy data type (e.g. np.int16), the array will be stretched
to fit the full range of values of that data type. If a value is given for this parameter, it
overrides min and max.

class pylinac.core.profile.ProfileMixin
Bases: object

A mixin to provide various manipulations of 1D profile data.

invert () — None
Invert (imcomplement) the profile.

normalize (norm_val: Union[str, float] = 'max’) — None
Normalize the profile to the given value.

Parameters norm_val (str, number) — If a string, must be ‘max’, which normalizes
the values to the maximum value. If a number, normalizes all values to that number.

stretch (min: float = 0, max: float = 1) — None
‘Stretch’ the profile to the min and max parameter values.

Parameters
e min (number) — The new minimum of the values
* max (number) — The new maximum value.

ground () — float
Ground the profile such that the lowest value is 0.

Returns The minimum value that was used as the grounding value.
Return type float

filter (size: float = 0.05, kind: str = 'median’) — None
Filter the profile.

Parameters

* size (float, int) - Size of the median filter to apply. If a float, the size is the
ratio of the length. Must be in the range 0-1. E.g. if size=0.1 for a 1000-element
array, the filter will be 100 elements. If an int, the filter is the size passed.

e kind ({ 'median’, 'gaussian'})— The kind of filter to apply. If gaussian,
size is the sigma value.

class pylinac.core.profile.Interpolation
Bases: enum.Enum

Interpolation Enum

NONE = None

298 Chapter 5. Contributing

http://www.labri.fr/perso/nrougier/teaching/numpy.100/
http://www.labri.fr/perso/nrougier/teaching/numpy.100/

pylinac Documentation, Release 3.8.2

LINEAR = 'Linear'

SPLINE

'Spline’

class pylinac.core.profile.Normalization
Bases: enum.Enum

Normalization method Enum

NONE = None

GEOMETRIC_CENTER = 'Geometric center'

BEAM CENTER = 'Beam center'

MAX = 'Max'

class pylinac.core.profile.Edge
Bases: enum.Enum

Edge detection Enum

FWHM = 'FWHM'

INFLECTION_ DERIVATIVE = 'Inflection Derivative'
INFLECTION_HILL = 'Inflection Hill'
class pylinac.core.profile.SingleProfile (values: numpy.ndarray, dpmm: Op-
tional[float] = None, interpolation:
Union[pylinac.core.profile.Interpolation, str,
None] = <lInterpolation.LINEAR: "Lin-
ear’>, ground: bool = True, interpola-
tion_resolution_mm: float = 0.1, interpola-

tion_factor: float = 10, normalization_method:
Union[pylinac.core.profile. Normalization,

str] = <Normalization. BEAM_CENTER:
’Beam center’>, edge_detection_method:
Union[pylinac.core.profile. Edge,

str] = <Edge. FWHM: "FWHM’>,
edge_smoothing_ratio: float = 0.003,
hill_window_ratio: float = 0.1, x_values:

Optional[numpy.ndarray] = None)

Bases: pylinac.core.profile.ProfileMixin

A profile that has one large signal, e.g. a radiation beam profile. Signal analysis methods are given, mostly based
on FWXM and on Hill function calculations. Profiles with multiple peaks are better suited by the MultiProfile

class.

Parameters

values — The profile numpy array. Must be 1D.

dpmm — The dots (pixels) per mm. Pass to get info like beam width in distance units in
addition to pixels

interpolation — Interpolation technique.
ground — Whether to ground the profile (set min value to 0). Helpful most of the time.

interpolation_resolution_mm- The resolution that the interpolation will scale
to. Only used if dpmm is passed and interpolation is set. E.g. if the dpmm is 0.5 and
the resolution is set to 0.1mm the data will be interpolated to have a new dpmm of 10
(1/0.1).

5.15. Core Modules 299

pylinac Documentation, Release 3.8.2

* interpolation_factor — The factor to multiply the data by. Only used if inter-
polation is used and dpmm is NOT passed. E.g. 10 will perfectly decimate the existing
data according to the interpolation method passed.

* normalization_method — How to pick the point to normalize the data to.

* edge_detection_method — The method by which to detect the field edge. FWHM
is reasonable most of the time except for FFF beams. Inflection-derivative will use the
max gradient to determine the field edge. Note that this may not be the 50% height.
In fact, for FFF beams it shouldn’t be. Inflection methods are better for FFF and other
unusual beam shapes.

* edge_smoothing_ratio — Only applies to INFLECTION_DERIVATIVE and
INFLECTION_HILL.

The ratio of the length of the values to use as the sigma for a Gaussian filter applied before
searching for the inflection. E.g. 0.005 with a profile of 1000 points will result in a sigma
of 5. This helps make the inflection point detection more robust to noise. Increase for
noisy data.

* hill window_ratio — The ratio of the field size to use as the window to fit the Hill
function. E.g. 0.2 will using a window centered about each edge with a width of 20% the
size of the field width. Only applies when the edge detection is INFLECTION_HILL.

* x_values — The x-values of the profile, if any. If None, will generate a simple
range(len(values)).

resample (interpolation_factor: int = 10, interpolation_resolution_mm: float = 0.1) —

pylinac.core.profile.SingleProfile
Resample the profile at a new resolution. Returns a new profile

geometric_center () — dict
The geometric center (i.e. the device center)

beam center () — dict
The center of the detected beam. This can account for asymmetries in the beam position (e.g. offset jaws)

fwxm data (x: int = 50) — dict
Return the width at X-Max, where X is the percentage height.

Parameters x — The percent height of the profile. E.g. x = 50 is 50% height, i.e. FWHM.

field_data (in_field ratio: float = 0.8, slope_exclusion_ratio=0.2) — dict
Return the width at X-Max, where X is the percentage height.

Parameters

e in field ratio — In Field Ratio: 1.0 is the entire detected field; 0.8 would be
the central 80%, etc.

* slope_exclusion_ratio — Ratio of the field width to use as the cutoff between
“top” calculation and “slope” calculation. Useful for FFF beams. This area is cen-
trally located in the field. E.g. 0.2 will use the central 20% of the field to calculate the
“top” value. To calculate the slope of each side, the field width between the edges of
the in_field_ratio and the slope exclusion region are used.

Warning: The “top” value is always calculated. For FFF beams this should be
reasonable, but for flat beams this value may end up being non-sensible.

300 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

inflection _data () — dict
Calculate the profile inflection values using either the 2nd derivative or a fitted Hill function.

Note: This only applies if the edge detection method is INFLECTION _....

penumbra (lower: int = 20, upper: int = 80)
Calculate the penumbra of the field. Dependent on the edge detection method.

Parameters

* lower — The lower % of the beam to use. If the edge method is FWHM, this is the
typical % penumbra you’re thinking. If the inflection method is used it will be the
value/50 of the inflection point value. E.g. if the inflection point is perfectly at 50%
with a lower of 20, then the penumbra value here will be 20% of the maximum. If
the inflection point is at 30% of the max value (say for a FFF beam) then the lower
penumbra will be 1ower /50 of the inflection point or 0. 3xlower/50.

* upper — Upper % of the beam to use. See lower for details.

field_calculation (in_field_ratio: float = 0.8, calculation: str = 'mean’, slope_exclusion_ratio:

float = 0.2) — Union[float, Tuple[float, float]]
Perform an operation on the field values of the profile. This function is useful for determining field

symmetry and flatness.
Parameters
e in field ratio — Ratio of the field width to use in the calculation.

e calculation ({'mean', 'median', 'max', 'min', 'area'}) -

Calculation to perform on the field values.

gamma (evaluation_profile: pylinac.core.profile.SingleProfile, distance_to_agreement: float = 1,
dose_to_agreement: float = 1, gamma_cap_value: float = 2, dose_threshold: float = 5,

global_dose: bool = True, fill_value: float = nan) — numpy.ndarray
Calculate a 1D gamma. The passed profile is the evaluation profile. The instance calling this method is

the reference profile. This profile must have the dpmm value given at instantiation so that physical spacing
can be evaluated. The evaluation profile is resampled to be the same resolution as the reference profile.

Note: The difference between this method and the gamma_1d function is that 1) this is computed on
Profile instances and 2) this validates the physical spacing of the profiles.

Parameters

* evaluation_profile — The evaluation profile. This profile must have the dpmm
value given at instantiation so that physical spacing can be evaluated.

* distance_to_agreement — Distance in mm to search
* dose_to_agreement — Dose in % of either global or local reference dose

* gamma_cap_value — The value to cap the gamma at. E.g. a gamma of 5.3 will get
capped to 2. Useful for displaying data with a consistent range.

* global_dose — Whether to evaluate the dose to agreement threshold based on the
global max or the dose point under evaluation.

¢ dose_threshold — The dose threshold as a number between 0 and 100 of the
% of max dose under which a gamma is not calculated. This is not affected by the

5.15. Core Modules 301

pylinac Documentation, Release 3.8.2

global/local dose normalization and the threshold value is evaluated against the global
max dose, period.

e £fill value - The value to give pixels that were not calculated because they were
under the dose threshold. Default is NaN, but another option would be 0. If NaN,
allows the user to calculate mean/median gamma over just the evaluated portion and
not be skewed by 0’s that should not be considered.

plot (show: bool = True) — None
Plot the profile.

class pylinac.core.profile.MultiProfile (values: Union[numpy.ndarray, Sequence])
Bases: pylinac.core.profile.ProfileMixin

A class for analyzing 1-D profiles that contain multiple signals. Methods are mostly for finding & filtering the
signals, peaks, valleys, etc. Profiles with a single peak (e.g. radiation beam profiles) are better suited by the
SingleProfile class.

values
The array of values passed in on instantiation.

Type ndarray

peaks
List of Points, containing value and index information.

Type list

valleys
Same as peaks, but for valleys.

Type list

Parameters values (iterable)— Array of profile values.

plot (ax: Optional[matplotlib.axes._axes.Axes] = None) — None
Plot the profile.

Parameters ax (plt.Axes)— An axis to plot onto. Optional.

find_peaks (threshold: Union{float, int] = 0.3, min_distance: Union[float, int] = 0.05, max_number:
Optional[int] = None, search_region: Tuple = (0.0, 1.0), peak_sort="prominences’) —
Tuple[numpy.ndarray, numpy.ndarray]
Find the peaks of the profile using a simple maximum value search. This also sets the peaks attribute.

Parameters

* threshold (int, float)- The value the peak must be above to be considered
a peak. This removes “peaks” that are in a low-value region. If passed an int, the
actual value is the threshold. E.g. when passed 15, any peak less with a value <15 is
removed. If passed a float, it will threshold as a percent. Must be between 0 and 1.
E.g. when passed 0.4, any peak <40% of the maximum value will be removed.

* min_distance (int, float) — If passed an int, parameter is the number of
elements apart a peak must be from neighboring peaks. If passed a float, must be
between 0 and 1 and represents the ratio of the profile to exclude. E.g. if passed
0.05 with a 1000-element profile, the minimum peak width will be 0.05*1000 = 50
elements.

* max_number (int, None)-— Specify up to how many peaks will be returned. E.g.
if 3 is passed in and 5 peaks are found, only the 3 largest peaks will be returned. If
None, no limit will be applied.

302 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* search_region (tuple of ints, floats, or both) — The region
within the profile to search. The tuple specifies the (left, right) edges to search. This
allows exclusion of edges from the search. If a value is an int, it is taken as is. If a
float, must be between O and 1 and is the ratio of the profile length. The left value
must be less than the right.

Returns indices — The indices and values of the peaks.
Return type ndarray, values, ndarray

find valleys (threshold: Union[float, int] = 0.3, min_distance: Union[float, int] = 0.05,
max_number: Optional[int] = None, search_region: Tuple = (0.0, 1.0)) — Tu-
ple[numpy.ndarray, numpy.ndarray]

Find the valleys (minimums) of the profile using a simple minimum value search.

Returns indices — The indices and values of the valleys.
Return type ndarray, values, ndarray

See also:

find_peaks () : Further parameter info.

find_fwxm_peaks (threshold: Union[float, int] = 0.3, min_distance: Union[float, int] =
0.05, max_number: Optional[int] = None, search_region: Tuple = (0.0,
1.0), peak_sort: str = ’prominences’, required_prominence=None) — Tu-

ple[numpy.ndarray, numpy.ndarray]
Find peaks using the center of the FWXM (rather than by max value).

Parameters x (int, float)— The Full-Width-X-Maximum desired. E.g. 0.7 will return
the FW70%M. Values must be between 0 and 100.

See also:
find peaks () Further parameter info

class pylinac.core.profile.CircleProfile (center: pylinac.core.geometry.Point, radius:
float, image_array: numpy.ndarray, start_angle:
Unionf[float, int] = 0, ccw: bool = True,

sampling_ratio: float = 1.0)
Bases: pylinac.core.profile.MultiProfile, pylinac.core.geometry.Circle

A profile in the shape of a circle.

image_array
The 2D image array.

Type ndarray

start_angle
Starting position of the profile in radians; O is right (O on unit circle).

Type int, float

cew
How the profile is/was taken; clockwise or counter-clockwise.

Type bool

Parameters

* image_array (ndarray) — The 2D image array.

5.15. Core Modules 303

pylinac Documentation, Release 3.8.2

* start_angle (int, float) - Starting position of the profile in radians; O is right
(0 on unit circle).

* ccew (bool) - If True (default), the profile will proceed counter-clockwise (the direction
on the unit circle). If False, will proceed clockwise.

* sampling_ratio (float) — The ratio of pixel sampling to real pixels. E.g. if 1.0,
the profile will have approximately the same number of elements as was encountered in
the profile. A value of 2.0 will sample the profile at 2x the number of elements.

See also:
Circle : Further parameter info.

size
The elemental size of the profile.

x_locations
The x-locations of the profile values.

y_locations
The x-locations of the profile values.

find_peaks (threshold: Union[float, int] = 0.3, min_distance: Union[float, int] = 0.05, max_number:
Optional[int] = None, search_region: Tuple[float, float] = (0.0, 1.0)) — Tu-

ple[numpy.ndarray, numpy.ndarray]
Overloads Profile to also map peak locations to the image.

find_valleys (threshold: Union[float, int] = 0.3, min_distance: Unionf[float, int] = 0.05,
max_number: Optional[int] = None, search_region: Tuple[float, float] = (0.0, 1.0))

— Tuple[numpy.ndarray, numpy.ndarray]
Overload Profile to also map valley locations to the image.

find_fwxm_peaks (threshold: Union[float, int] = 0.3, min_distance: Union[float, int] = 0.05,
max_number: Optional[int] = None, search_region: Tuple[float, float] = (0.0,

1.0)) — Tuple[numpy.ndarray, numpy.ndarray]
Overloads Profile to also map the peak locations to the image.

roll (amount: int) — None
Roll the profile and x and y coordinates.

plot2axes (axes: Optional[matplotlib.axes._axes.Axes] = None, edgecolor: str = ’black’, fill: bool =

False, plot_peaks: bool = True) — None
Plot the circle to an axes.

Parameters

* axes (matplotlib.Axes, None)— The axes to plot on. If None, will create a
new figure of the image array.

* edgecolor (str)— Color of the Circle; must be a valid matplotlib color.
e £il11 (bool)— Whether to fill the circle. matplotlib keyword.
* plot_peaks (bool) - If True, plots the found peaks as well.

class pylinac.core.profile.CollapsedCircleProfile (center: Point, radius: float, im-
age_array: Union[np.ndarray, 'Ar-
raylmage’], start_angle: int = 0,
cew: bool = True, sampling_ratio:
float = 1.0, width_ratio: float = 0.1,
num_profiles: int = 20)
Bases: pylinac.core.profile.CircleProfile

304 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

A circular profile that samples a thick band around the nominal circle, rather than just a 1-pixel-wide profile to
give a mean value.

Parameters

* width_ratio (float) - The “thickness” of the band to sample. The ratio is relative
to the radius. E.g. if the radius is 20 and the width_ratio is 0.2, the “thickness” will be 4
pixels.

* num_profiles (int) — The number of profiles to sample in the band. Profiles are
distributed evenly within the band.

See also:
CircleProfile : Further parameter info.

size
The elemental size of the profile.

plot2axes (axes: Optional[matplotlib.axes._axes.Axes] = None, edgecolor: str = ’black’, fill: bool =

False, plot_peaks: bool = True) — None
Add 2 circles to the axes: one at the maximum and minimum radius of the ROI.

See also:
plot2axes () : Further parameter info.

pylinac.core.profile.find_peaks (values: numpy.ndarray, threshold: Union[float, int] = -inf,
peak_separation: Union[float, int] = 0, max_number: Op-
tional[int] = None, fwxm_height: float = 0.5, min_width:
int = 0, search_region: Tuple[float, float] = (0.0, 1.0),
peak_sort="prominences’, required_prominence=None) —

Tuple[numpy.ndarray, dict]
Find the peaks of a 1D signal. Heavily relies on the scipy implementation.

Parameters
* values (array-1ike)— Signal values to search for peaks within.

* threshold (int, float) - The value the peak must be above to be considered a
peak. This removes “peaks” that are in a low-value region. If passed an int, the actual
value is the threshold. E.g. when passed 15, any peak less with a value <15 is removed. If
passed a float, it will threshold as a percent. Must be between 0 and 1. E.g. when passed
0.4, any peak <40% of the maximum value will be removed.

* peak_separation (int, float) — If passed an int, parameter is the number of
elements apart a peak must be from neighboring peaks. If passed a float, must be between
0 and 1 and represents the ratio of the profile to exclude. E.g. if passed 0.05 with a 1000-
element profile, the minimum peak width will be 0.05%1000 = 50 elements.

* max_number (int, None)— Specify up to how many peaks will be returned. E.g. if
3 is passed in and 5 peaks are found, only the 3 largest peaks will be returned.

* fwxm_height (float) — The relative height at which a FWXM calculation is per-
formed. Although this function finds simple max values, the underlying function can
provide fwxm information as well.

* min_width (int) - The minimum width of the peak.

* search_region (tuple)- The search region to use within the values. Using between
0 and 1 will convert to a ratio of the indices. E.g. to search the middle half of the passed
values, use (0.25, 0.75). Using ints above 1 will use the indices directly. E.g. (33, 71)
will search between those two indices.

5.15. Core Modules 305

pylinac Documentation, Release 3.8.2

Returns
* peak_idxs (numpy.array) — The indices of the peaks found.

» peak_props (dict) — A dict containing contextual peak data.

5.15.4 1/0 Module

I/O helper functions for pylinac.

pylinac.core.io.is_dicom (file: Union[str, pathlib.Path]) — bool

Boolean specifying if file is a proper DICOM file.

This function is a pared down version of read_preamble meant for a fast return. The file is read for a proper
preamble (‘DICM’), returning True if so, and False otherwise. This is a conservative approach.

Parameters £ile (str)— The path to the file.
See also:

pydicom.filereader.read_preamble (),pydicom.filereader.read_partial ()

pylinac.core.io.is_dicom_image (file: Union[str, pathlib.Path, BinarylO]) — bool

Boolean specifying if file is a proper DICOM file with a image
Parameters file (str)— The path to the file.
See also:

pydicom.filereader.read_preamble (),pydicom.filereader.read_partial ()

pylinac.core.io.retrieve_dicom_£ile (file: Union[sty, pathlib.Path, BinarylO]) — pydi-

com.dataset.FileDataset
Read and return the DICOM dataset.

Parameters file (str)— The path to the file.

class pylinac.core.io.TemporaryZipDirectory (zfile: Union[str, pathlib.Path, BinarylO])

Bases: tempfile.TemporaryDirectory
Creates a temporary directory that unpacks a ZIP archive. Shockingly useful

Parameters zfile (str)— String that points to a ZIP archive.

pylinac.core.io.retrieve_filenames (directory: Union[str, pathlib.Path], func: Op-

tional[Callable] = None, recursive: bool = True,
**kwargs) — List[str]
Retrieve file names in a directory.

Parameters
* directory (str)— The directory to walk over recursively.

e func (function, None)- The function that validates if the file name should be kept.
If None, no validation will be performed and all file names will be returned.

* recursive (bool)— Whether to search only the root directory.

* kwargs — Additional arguments passed to the func parameter.

pylinac.core.io.retrieve_demo_f£ile (name: str, force: bool = False) — pathlib.Path

Retrieve the demo file either by getting it from file or from a URL.

If the file is already on disk it returns the file name. If the file isn’t on disk, get the file from the URL and put it
at the expected demo file location on disk for lazy loading next time.

306

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Parameters name (str) — The suffix to the url (location within the S3 bucket) pointing to the
demo file.

pylinac.core.io.is_url (url: str) — bool
Determine whether a given string is a valid URL.

Parameters url (str) -
Returns
Return type bool

pylinac.core.io.get_url (url: str, destination: Union[str, pathlib.Path, None] = None, progress_bar:

bool = True) — str
Download a URL to a local file.

Parameters
e url (str)— The URL to download.

* destination (str, None) - The destination of the file. If None is given the file is
saved to a temporary directory.

* progress_bar (bool)— Whether to show a command-line progress bar while down-
loading.

Returns filename — The location of the downloaded file.

Return type str

Notes

Progress bar use/example adapted from tqdm documentation: https://github.com/tqdm/tqdm

class pylinac.core.io.SNCProfiler (path: str, detector_row: int = 106, bias_row: int = 107, cal-
ibration_row: int = 108, data_row: int = -1, data_columns:
slice = slice(5, 259, None))

Bases: object
Load a file from a Sun Nuclear Profiler device. This accepts .prs files.
Parameters
* path (str) — Path to the .prs file.
* detector_row-—
* bias_row-
e calibration_row -

e data_row-—

* data_columns — The range of columns that the data is in. Usually, there are some
columns before and after the real data.

to_profiles (n_detectors_row: int = 63, **kwargs) — Tuple[pylinac.core.profile.SingleProfile,
pylinac.core.profile.SingleProfile, pylinac.core.profile.SingleProfile,

pylinac.core.profile.SingleProfile]
Convert the SNC data to SingleProfiles. These can be analyzed directly or passed to other modules like

flat/sym.

Parameters n_detectors_row (int) — The number of detectors in a given row. Note
that they Y profile includes 2 extra detectors from the other 3.

5.15. Core Modules 307

https://github.com/tqdm/tqdm

pylinac Documentation, Release 3.8.2

5.15.5 ROI Module

pylinac.core.roi.bbox_center (region: skimage.measure._regionprops.RegionProperties) —

pylinac.core.geometry.Point
Return the center of the bounding box of an scikit-image region.

Parameters region — A scikit-image region as calculated by skimage.measure.regionprops().
Returns point
Return type Point

class pylinac.core.roi.Contrast
Bases: enum.Enum

Contrast calculation technique. See Visibility

MICHELSON = 'Michelson'
WEBER = 'Weber'
RATIO = 'Ratio'

class pylinac.core.roi.DiskROI (array: numpy.ndarray, angle: float, roi_radius: float,
dist_from_center: float, phantom_center: Union[Tuple,

pylinac.core.geometry.Point])
Bases: pylinac.core.geometry.Circle

An class representing a disk-shaped Region of Interest.
Parameters
* array (ndarray) — The 2D array representing the image the disk is on.
* angle (int, float)- The angle of the ROI in degrees from the phantom center.
* roi_radius (int, float)- The radius of the ROI from the center of the phantom.

* dist_from center (int, float) — The distance of the ROI from the phantom
center.

* phantom_center (tuple)— The location of the phantom center.

pixel_value
The median pixel value of the ROI.

std
The standard deviation of the pixel values.

circle_mask () — numpy.ndarray
Return a mask of the image, only showing the circular ROI.

plot2axes (axes: Optional[matplotlib.axes._axes.Axes] = None, edgecolor: str = ’black’, fill: bool =

False) — None
Plot the Circle on the axes.

Parameters
* axes (matplotlib.axes.Axes)— An MPL axes to plot to.
¢ edgecolor (str) - The color of the circle.

e £il1l (bool)— Whether to fill the circle with color or leave hollow.

308 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class pylinac.core.roi.LowContrastDiskROI (array: Union[numpy.ndarray,
pylinac.core.image.Arraylmage], angle:
float, roi_radius: float, dist_from_center:
float, phantom_center: Unionftuple,
pylinac.core.geometry.Point], con-
trast_threshold: Optional[float] = None,
contrast_reference: Optional[float] = None,
cnr_threshold: Optional[float] = None,
contrast_method: pylinac.core.roi.Contrast

= <Contrast MICHELSON: ’Michelson’>,

visibility_threshold: Optional[float] = 0.1)
Bases: pylinac.core.roi.DiskROT

A class for analyzing the low-contrast disks.

Parameters contrast_threshold (float, int)-— The threshold for considering a bubble
to be “seen”.

signal_to_noise
The signal to noise ratio.

contrast_to_noise
The contrast to noise ratio of the ROI

contrast
/len.wikipedia.org/wiki/Contrast_(vision).

Type The contrast of the bubble. Uses the contrast method passed in the constructor. See https

cnr_constant
The contrast-to-noise value times the bubble diameter.

visibility
/Iwww.osapublishing.org/josa/abstract.cfm?uri=josa-38-2-196. See also here: https://
howradiologyworks.com/x-ray-cnr/. Finally, a review paper here: http://xrm.phys.northwestern.

edu/research/pdf_papers/1999/burgess_josaa_1999.pdf Importantly, the Rose model is not applicable for
high-contrast use cases.

Type The visual perception of CNR. Uses the model from A Rose
Type https

contrast_constant
The contrast value times the bubble diameter.

passed
Whether the disk ROI contrast passed.

passed_visibility
Whether the disk ROI’s visibility passed.

passed_contrast_constant
Boolean specifying if ROI pixel value was within tolerance of the nominal value.

passed_cnr_constant
Boolean specifying if ROI pixel value was within tolerance of the nominal value.

plot_color
Return one of two colors depending on if ROI passed.

plot_color_ constant
Return one of two colors depending on if ROI passed.

5.15. Core Modules 309

https://howradiologyworks.com/x-ray-cnr/
https://howradiologyworks.com/x-ray-cnr/
http://xrm.phys.northwestern.edu/research/pdf_papers/1999/burgess_josaa_1999.pdf
http://xrm.phys.northwestern.edu/research/pdf_papers/1999/burgess_josaa_1999.pdf

pylinac Documentation, Release 3.8.2

plot_color_cnr
Return one of two colors depending on if ROI passed.

class pylinac.core.roi.HighContrastDiskROI (array: numpy.ndarray, angle: float,
roi_radius: float, dist_from_center:
float, phantom_center: Unionftuple,
pylinac.core.geometry.Point], con-

trast_threshold: float)
Bases: pylinac.core.roi.DiskROI

A class for analyzing the high-contrast disks.

Parameters contrast_threshold (float, int)- The threshold for considering a bubble
to be “seen”.

max
The max pixel value of the ROIL.

min
The min pixel value of the ROIL.

class pylinac.core.roi.RectangleROI (array, width, height, angle, dist_from_center, phan-

tom_center)
Bases: pylinac.core.geometry.Rectangle

Class that represents a rectangular ROI.

pixel_array
The pixel array within the ROL.

pixel_value
The pixel array within the ROI.

mean
The mean value within the ROI.

std
The std within the ROI.

min
The min value within the ROIL

max
The max value within the ROI.

5.15.6 Mask Module

Module for processing “masked” arrays, i.e. binary images.

pylinac.core.mask.bounding box (array: numpy.array) -> (<class 'float’>, Ellipsis)
Get the bounding box values of an ROl in a 2D array.

5.15.7 Utilities Module

Utility functions for pylinac.

pylinac.core.utilities.convert_to_enum (value: Union[str, enum.Enum, None], enum:

Type[enum.Enum]) — enum.Enum
Convert a value to an enum representation from an enum value if needed

310 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

class pylinac.core.utilities.ResultBase
Bases: object

pylinac_version = None
date_of analysis = None

pylinac.core.utilities.clear_data_files ()
Delete all demo files, image classifiers, etc from the demo folder

pylinac.core.utilities.assign2machine (source_file: str, machine_file: str)
Assign a DICOM RT Plan file to a specific machine. The source file is overwritten to contain the machine of the
machine file.

Parameters

* source_file (str) — Path to the DICOM RTPlan file that contains the fields/plan
desired (e.g. a Winston Lutz set of fields or Varian’s default PF files).

e machine_ file (str) — Path to a DICOM RTPIlan file that has the desired machine.
This is easily obtained from pushing a plan from the TPS for that specific machine. The
file must contain at least one valid field.

pylinac.core.utilities.is_close (val: float, target: Union[float, Sequence], delta: float = 1)
Return whether the value is near the target value(s).

Parameters
* val (number) — The value being compared against.

* target (number, iterable) - If a number, the values are simply evaluated. If
a sequence, each target is compared to val. If any values of target are close, the
comparison is considered True.

Returns
Return type bool

pylinac.core.utilities.simple_round (number: float, decimals: int = 0) — float
Round a number to the given number of decimals. Fixes small floating number errors.

pylinac.core.utilities.is_iterable (object) — bool
Determine if an object is iterable.

class pylinac.core.utilities.Structure (**kwargs)
Bases: object

A simple structure that assigns the arguments to the object.

pylinac.core.utilities.decode_binary (file: BinarylO, dtype: Union[Type[int], Type[float],
Type[str], str], num_values: int = 1, cursor_shift: int
= 0) — Union[int, float, str, numpy.ndarray]
Read in a raw binary file and convert it to given data types.

Parameters
e file — The open file object.

* dtype — The expected data type to return. If int or float and num_values > 1, will return
numpy array.

* num_values — The expected number of dtype to return

Note: This is not the same as the number of bytes.

5.15. Core Modules 311

pylinac Documentation, Release 3.8.2

* cursor_shift (int)— The number of bytes to move the cursor forward after decod-
ing. This is used if there is a reserved section after the read-in segment.

5.15.8 Decorators Module

pylinac.core.decorators.lru_cache (*lru_args, **lru_kwargs)
Method-safe LRU cache; https://stackoverflow.com/a/33672499

5.16 Image Generator

5.16.1 Overview

New in version 2.4.

The image generator module allows users to generate simulated radiation images. This module is different than other
modules in that the goal here is non-deterministic. There are no phantom analysis routines here. What is here started
as a testing concept for pylinac itself, but has uses for advanced users of pylinac who wish to build their own tools.

Warning: This feature is currently experimental and untested.

The module allows users to create a pipeline ala keras, where layers are added to an empty image. The user can add
as many layers as they wish.

5.16.2 Quick Start

The basics to get started are to import the image simulators and layers from pylinac and add the layers as desired.

from matplotlib import pyplot as plt

from pylinac.core.image_ generator import AS1000Image
from pylinac.core.image_generator.layers import FilteredFieldLayer,
—GaussianFilterLayer

asl000 = AS1000Image() # this will set the pixel size and shape automatically
asl1l000.add_layer (FilteredFieldLayer (field_size_mm= (50, 50))) # create a 50x50mm_,
—square field

asl000.add_layer (GaussianFilterLayer (sigma_mm=2)) # add an image-wide gaussian to_,
—simulate penumbra/scatter

asl000.generate_dicom(file_out_name="my AS1000.dcm", gantry_angle=45) # create a_
—DICOM file with the simulated image

plot the generated image

plt.imshow (asl1000.1image)

5.16.3 Layers & Simulators

Layers are very simple structures. They usually have constructor arguments specific to the layer and always define an
apply method with the signature .apply (image, pixel_size) -> image. The apply method returns the
modified image (a numpy array). That’s it!

312 Chapter 5. Contributing

https://stackoverflow.com/a/33672499

pylinac Documentation, Release 3.8.2

100

200

300

400

500

600

700

0 200 400 600 800 1000

5.16. Image Generator 313

pylinac Documentation, Release 3.8.2

Simulators are also simple and define the parameters of the image to which layers are added. They have pixel_size
and shape properties and always have an add_layer method with the signature .add_layer (layer:
Layer). They also have a generate_dicom method for dumping the image along with mostly stock metadata to
DICOM.

5.16.4 Extending Layers & Simulators

This module is meant to be extensible. That’s why the structures are defined so simply. To create a custom simulator,
inherit from Simulator and define the pixel size and shape. Note that generating DICOM does not come for free:

from pylinac.core.image_generator.simulators import Simulator
class AS5000(Simulator):
pixel_size = 0.12

shape = (5000, 5000)

use like any other simulator

To implement a custom layer, inherit from Layer and implement the apply method:

from pylinac.core.image_generator.layers import Layer
class MyAwesomeLayer (Layer) :
def apply(image, pixel_size):
do stuff here

return image

use
from pylinac.core.image_generator import AS1000Image

asl1l000 = AS1000Image ()
asl1l000.add_layer (MyAwesomeLayer ())

5.16.5 Examples

Let’s make some images!

Simple Open Field

from matplotlib import pyplot as plt

from pylinac.core.image_generator import AS1000Image

from pylinac.core.image_generator.layers import FilteredFieldLayer,
—GaussianFilterLayer

asl1l000 = AS1000Image () # this will set the pixel size and shape automatically
asl000.add_layer (FilteredFieldLayer (field_size_mm= (150, 150))) # create a 50x50mm_,
—square field

asl1l000.add_layer (GaussianFilterLayer (sigma_mm=2)) # add an image-wide gaussian to_,

—simulate penumbra/scatter
plot the generated image
plt.imshow (as1000.image)

314 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

100

200

300

400

500

600

700

0 200 400 600 800 1000

5.16. Image Generator 315

pylinac Documentation, Release 3.8.2

Off-center Open Field

from matplotlib import pyplot as plt

from pylinac.core.image_generator import AS1000Image

from pylinac.core.image_generator.layers import FilteredFieldLayer,
—GaussianFilterLayer

asl000 = AS1000Image() # this will set the pixel size and shape automatically
asl1l000.add_layer (FilteredFieldLayer (field_size_mm= (30, 30), cax_offset_mm= (20, 40)))
asl1l000.add_layer (GaussianFilterLayer (sigma_mm=3))

plot the generated image

plt.imshow (as1000.image)

100

200

300

400

500

600

700

0 200 400 600 800 1000

Winston-Lutz FFF Cone Field with Noise

from matplotlib import pyplot as plt

from pylinac.core.image_generator import AS1200Image

from pylinac.core.image_generator.layers import FilterFreeConelayer,
—GaussianFilterLayer, PerfectBBLayer, RandomNoiselLayer

asl1l200 = AS1200Image ()
asl200.add_layer (FilterFreeConeLayer (50))
asl1l200.add_layer (PerfectBBLayer (bb_size_mm=5))

(continues on next page)

316 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

(continued from previous page)

asl200.add_layer (GaussianFilterLayer (sigma_mm=2))
asl1l200.add_layer (RandomNoiseLayer (sigma=0.02))

plot the generated image

plt.imshow (as1200.image)

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

VMAT DRMLC

from matplotlib import pyplot as plt

from pylinac.core.image_generator import AS1200Image

from pylinac.core.image_generator.layers import FilteredFieldLayer,
—GaussianFilterLayer

asl1l200 = AS1200Image ()

asl1l200.add_layer (FilteredFieldLayer ((150, 20), cax_offset_mm=(0, -40)))
asl200.add_layer (FilteredFieldLayer ((150, 20), cax_offset_mm=(0, -10)))
asl1l200.add_layer (FilteredFieldLayer ((150, 20), cax_offset_mm=(0, 20)))

asl200.add_layer (FilteredFieldLayer ((150, 20), cax_offset_mm=(0, 50)))

asl200.add_layer (GaussianFilterLayer())

plt.imshow (as1200.image)
plt.show ()

5.16. Image Generator

317

pylinac Documentation, Release 3.8.2

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

318 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Picket Fence

from matplotlib import pyplot as plt

from pylinac.core.image_generator import AS1200Image

from pylinac.core.image_generator.layers import FilteredFieldLayer,
—GaussianFilterLayer

asl1l200 = AS1200Image ()
height = 350
width = 4
offsets = range(-100, 100, 20)
for offset in offsets:
asl200.add_layer (FilteredFieldLayer ((height, width), cax_offset_mm=(0, offset)))
asl1l200.add_layer (GaussianFilterLayer())
plt.imshow (asl1200.image)
plt.show ()

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Starshot

Simulating a starshot requires a small trick as angled fields cannot be handled by default. The following example
rotates the image after every layer is applied.

Note: Rotating the image like this is a convenient trick but note that it will rotate the entire existing image including

5.16. Image Generator 319

pylinac Documentation, Release 3.8.2

all previous layers. This will also possibly erroneously adjust the horn effect simulation. Use with caution.

from scipy import ndimage

from matplotlib import pyplot as plt

from pylinac.core.image_generator import AS1200Image

from pylinac.core.image_generator.layers import FilteredFieldLayer,
—GaussianFilterLayer

asl1l200 = AS1200Image ()

asl1l200.add_layer (FilteredFieldLayer ((250, 7), alpha=0.5))

asl1l200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')
asl200.add_layer (FilteredFieldLayer ((250, 7), alpha=0.5))

asl1l200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')
asl1l200.add_layer (FilteredFieldLayer ((250, 7), alpha=0.5))

asl200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')
asl1l200.add_layer (FilteredFieldLayer ((250, 7), alpha=0.5))

asl1l200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')
asl200.add_layer (FilteredFieldLayer ((250, 7), alpha=0.5))

asl1l200.image = ndimage.rotate(asl200.image, 30, reshape=False, mode='nearest')
asl1l200.add_layer (FilteredFieldLayer ((250, 7), alpha=0.5))

asl200.add_layer (GaussianFilterLayer())

plt.imshow (as1200.image)

plt.show ()

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

320 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Helper utilities

Using the new utility functions of v2.5+ we can construct full dicom files of picket fence and winston-lutz sets of
images:

from pylinac.core.image_generator import generate_picketfence, generate_winstonlutz
from pylinac.core import image_generator

sim = image_generator.simulators.AS1000Image ()

field layer = image_generator.layers.FilteredFieldLayer # could also do_,

—FilterFreelLayer

generate_picketfence (simulator=Simulator, field_layer=FilteredFieldLayer,
file_out='"'pf_ image.dcm',
pickets=11, picket_spacing_mm=20, picket_width_mm=2,
picket_height_mm=300, gantry_angle=0)

we now have a pf image saved as 'pf_image.dcm'

create a set of WL images
this will create 4 images (via image_axes len) with an offset of 3mm to the left
the function is smart enough to correct for the offset w/r/t gantry angle.
generate_winstonlutz (simulator=sim, field_ layer=field_layer,
final_layers=[GaussianFilterLayer ()], gantry_tilt=0,
dir_out="'./wl_dir', offset_mm_left=3,
image_axes=[[0, O, O], [180, O, O], [90, 0O, O], [270, 0, 011)

5.16.6 Tips & Tricks

e The FilteredFieldLayer and FilterFree<Field, Cone>Layer have gaussian filters applied to
create a first-order approximation of the horn(s) of the beam. It doesn’t claim to be super-accurate, it’s just to
give some reality to the images. You can adjust the magnitude of these parameters to simulate other energies
(e.g. sharper horns) when defining the layer.

e The Perfect...Layer s do not apply any energy correction as above.

e Use alpha to adjust the intensity of the layer. E.g. the BB layer has a default alpha of -0.5 to simulate
attenuation. This will subtract out up to half of the possible dose range existing on the image thus far (e.g. an
open image of alpha 1.0 will be reduced to 0.5 after a BB is layered with alpha=-0.5). If you want to simulate
a thick material like tungsten you can adjust the alpha to be lower (more attenuation). An alpha of 1 means full
radiation, no attenuation (like an open field).

* Generally speaking, don’t apply more than one GaussianFilterLayer since they are additive. A good rule
is to apply one filter at the end of your layering.

* Apply ConstantLayer s at the beginning rather than the end.

Warning: Pylinac uses unsigned intl16 datatypes (native EPID dtype). To keep images from flipping bits when
adding layers, pylinac will clip the values. Just be careful when, e.g. adding a ConstantLayer at the end of a
layering. Better to do this at the beginning.

5.16.7 APl Documentation

5.16. Image Generator 321

pylinac Documentation, Release 3.8.2

Layers

class pylinac.core.image_generator.layers.PerfectConelayer (cone_size_mm: float
= 10, cax_offset_mm:
(<class float’>,
<class 'float’>) = (0,
0), alpha: float = 1.0)
Bases: pylinac.core.image_generator.layers.Layer
A cone without flattening filter effects
Parameters
* cone_size_mm - Cone size in mm at the iso plane
* cax_offset_mm - The offset in mm. (out, right)
* alpha - The intensity of the layer. 1 is full saturation/radiation. O is none.

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.FilterFreeConelLayer (cone_size_mm:
float = 10,
cax_offset_mm:
(<class ’float’>,
<class ’float’>)
= (0, 0), alpha:
float = 1.0, fil-
ter_magnitude:
float = 04, fil-
ter_sigma_mm:
float = 80)
Bases: pylinac.core.image_generator.layers.PerfectConeLayer
A cone with flattening filter effects.
Parameters
* cone_size_mm - Cone size in mm at the iso plane
* cax_offset_mm- The offset in mm. (out, right)
* alpha - The intensity of the layer. 1 is full saturation/radiation. O is none.

* filter magnitude - The magnitude of the CAX peak. Larger values result in
“pointier” fields.

e filter_ sigma_mm — Proportional to the width of the CAX peak. Larger values pro-
duce wider curves.

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.PerfectFieldLayer (field_size_mm:

(<class float’>,
<class float’>)
= (10, 10),
cax_offset_mm:

(<class float’>,

<class ’float’>) =
(0, 0), alpha: float =
1.0)

322 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Bases: pylinac.core.image_generator.layers.Layer
A square field without flattening filter effects
Parameters
* field_size_mm - Field size in mm at the iso plane
* cax_offset_mm - The offset in mm. (out, right)
* alpha - The intensity of the layer. 1 is full saturation/radiation. O is none.

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.FilteredFieldLayer (field_size_mm:

(<class ’float’>,
<class float’>)
= (10, 10),
cax_offset_mm:

(<class ’float’>,
<class float’>)
= (0, 0), alpha:
float = 1.0, gaus-
sian_height: float

= 0.03, gaus-
sian_sigma_mm:
float = 32)

Bases: pylinac.core.image_generator.layers.PerfectFieldLayer
A square field with flattening filter effects
Parameters
* field_ size_mm- Field size in mm at the iso plane
* cax_offset_mm - The offset in mm. (out, right)
* alpha — The intensity of the layer. 1 is full saturation/radiation. O is none.

* gaussian_height — The intensity of the “horns”, or more accurately, the CAX dip.
Proportional to the max value allowed for the data type. Increase to make the horns more
prominent.

* gaussian_sigma_mm — The width of the “horns”. A.k.a. the CAX dip width. In-
crease to create a wider horn effect.

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

5.16. Image Generator 323

pylinac Documentation, Release 3.8.2

class pylinac.core.image_generator.layers.FilterFreeFieldLayer (field_size_mm:
(<class 'float’>,
<class ’float’>)
= (10, 10),
cax_offset_mm:
(<class 'float’>,
<class ’float’>)
= (0, 0), al-
pha: float
= 1.0, gaus-
sian_height:
float =
0.4, gaus-
sian_sigma_mm:
float = 80)

Bases: pylinac.core.image_generator.layers.FilteredFieldLayer
A square field with flattening filter free (FFF) effects
Parameters
e field_size_ mm - Field size in mm at the iso plane
* cax_offset_mm- The offset in mm. (out, right)
* alpha - The intensity of the layer. 1 is full saturation/radiation. O is none.

* gaussian_height — The magnitude of the CAX peak. Larger values result in
“pointier” fields.

* gaussian_sigma_mm — Proportional to the width of the CAX peak. Larger values
produce wider curves.

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.PerfectBBLayer (bb_size_mm: float = 5,
cax_offset_mm: (<class
float’>, <class 'float’>)
= (0, 0), alpha: float = -
0.5)

Bases: pylinac.core.image_generator.layers.PerfectConeLayer
A BB-like layer. Like a cone, but with lower alpha (i.e. higher opacity)

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.GaussianFilterLayer (sigma_mm: float
=2)
Bases: pylinac.core.image_generator.layers.Layer

A Gaussian filter. Simulates the effects of scatter on the field

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.RandomNoiseLayer (mean: float = 0.0,
sigma: float = 0.001)
Bases: pylinac.core.image_generator.layers.Layer

A salt and pepper noise, simulating dark current

324 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

class pylinac.core.image_generator.layers.ConstantLayer (constant: float)
Bases: pylinac.core.image_generator.layers.Layer

A constant layer. Can be used to simulate scatter or background.

apply (image: numpy.ndarray, pixel_size: float, mag_factor: float) — numpy.ndarray
Apply the layer. Takes a 2D array and pixel size value in and returns a modified array.

Simulators

class pylinac.core.image_generator.simulators.AS500Image (sid: float = 1500)
Bases: pylinac.core.image_generator.simulators.Simulator
Simulates an AS500 EPID image.

Parameters sid — Source to image distance in mm.

generate_dicom (file_out_name: str, gantry_angle: float = 0.0, coll_angle: float = 0.0, table_angle:

float = 0.0) — None
Generate a DICOM file with the constructed image (via add_layer)

add_layer (layer: pylinac.core.image_generator.layers.Layer) — None
Add a layer to the image

class pylinac.core.image_generator.simulators.AS1000Image (sid: float = 1500)
Bases: pylinac.core.image_generator.simulators.Simulator

Simulates an AS1000 EPID image.

Parameters sid — Source to image distance in mm.

generate_dicom (file_out_name: str, gantry_angle: float = 0.0, coll_angle: float = 0.0, table_angle:

float = 0.0) — None
Generate a DICOM file with the constructed image (via add_layer)

add_layer (layer: pylinac.core.image_generator.layers.Layer) — None
Add a layer to the image

class pylinac.core.image_generator.simulators.AS1200Image (sid: float = 1500)
Bases: pylinac.core.image_generator.simulators.Simulator

Simulates an AS1200 EPID image.

Parameters sid — Source to image distance in mm.

generate_dicom (file_out_name: str, gantry_angle: float = 0.0, coll_angle: float = 0.0, table_angle:

float = 0.0) — None
Generate a DICOM file with the constructed image (via add_layer)

add_layer (layer: pylinac.core.image_generator.layers.Layer) — None
Add a layer to the image

5.16. Image Generator

325

pylinac Documentation, Release 3.8.2

Helpers

pylinac.core.image_generator.utils.generate_picketfence (simulator:

pylinac.core.image_generator.simulators.Simulator,
field_layer:

Type[Union[pylinac.core.image_generator.layers.F
pylinac.core.image_generator.layers.FilteredFieldL
pylinac.core.image_generator.layers. PerfectFieldLc
file_out: sty final_layers:
List[pylinac.core.image_generator.layers.Layer]

= None, pickets: int = 11,

picket_spacing_mm: float

= 20, picket_width_mm:

int = 2, picket_height_mm:

int = 300, gantry_angle:

int = 0, orientation:
pylinac.picketfence.Orientation

= <Orienta-

tion.UP_DOWN:

"Up-Down’>,

picket_offset_error:

Optional[Sequence] =

None) — None

Create a mock picket fence image. Will always be up-down.

Parameters

simulator — The image simulator
field_ layer - The primary field layer
file_out — The name of the file to save the DICOM file to.

final_layers — Optional layers to apply at the end of the procedure. Useful for noise
or blurring.

pickets — The number of pickets

picket_spacing_mm - The space between pickets
picket_width_mm — Picket width parallel to leaf motion
picket_height_mm — Picket height parallel to leaf motion
gantry_angle — Gantry angle; sets the DICOM tag.

326

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

pylinac.core.image_generator.utils.generate_winstonlutz (simulator:

pylinac.core.image_generator.simulators.Simulator,

field_layer:
Type[pylinac.core.image_generator.layers.Layer],
dir_out: Str,

field_size_mm: Tu-

ple[float, float] = (30,
30), final_layers: Op-
tional[List[pylinac.core.image_generator.layers.La
= None, bb_size_mm: float
= 5, offset_mm_left: float
= 0, offset_mm_up: float
= 0, offset_mm_in: float
= 0, image_axes: ((<class
‘int’>, <class ’int’>,
<class ’int’>), Ellipsis)
= ((0, 0, 0), (90, 0, 0),
(180, 0, 0), (270, 0, 0)),
gantry_tilt: float 0,
gantry_sag: float = 0,
clean_dir: bool = True)
— List[str]

Create a mock set of WL images, simulating gantry sag effects. Produces one image for each item in image_axes.

Parameters

simulator — The image simulator

field_layer — The primary field layer simulating radiation
dir_out — The directory to save the images to.

field size_mm - The field size of the radiation field in mm

final layers — Layers to apply after generating the primary field and BB layer.
Useful for blurring or adding noise.

bb_size_mm - The size of the BB. Must be positive.

offset_mm_left — How far left (at) to set the BB. Can be positive or negative.
offset_mm up — How far up (vert) to set the BB. Can be positive or negative.
offset_mm_in — How far in (long) to set the BB. Can be positive or negative.
image_axes — List of axis values for the images. Sequence is (Gantry, Coll, Couch).

gantry_ tilt — The tilt of the gantry that affects the position at 0 and 180. Simulates
a simple cosine function.

gantry_sag — The sag of the gantry that affects the position at gantry=90 and 270.
Simulates a simple sine function.

clean_dir — Whether to clean out the output directory. Useful when iterating.

5.16. Image Generator 327

pylinac Documentation, Release 3.8.2

pylinac.core.image_generator.utils.generate_winstonlutz_cone (simulator:

pylinac.core.image_generator.simulators. Sii
cone_layer:

Union[Type[pylinac.core.image_generator.l
Type[pylinac.core.image_generator.layers.F

dir_out: KYiA
cone_size_mm.
float = 17.5,

final_layers: Op-

tional[List[pylinac.core.image_generator.la

= None,
bb_size_mm:

float = 5, off-
set_mm_left: float
= 0, offset_mm_up:
float = 0, off-
set_mm_in: float
= 0, image_axes:

((<class ‘int’>,
<class ‘int’>,
<class ‘int’>),

Ellipsis) = ((0, 0,
0), (90, 0, 0), (180,
0, 0), (270, 0, 0)),
gantry_tilt: float =
0, gantry_sag: float
= 0, clean_dir:
bool = True) —
List[str]

Create a mock set of WL images with a cone field, simulating gantry sag effects. Produces one image for each
item in image_axes.

Parameters

simulator — The image simulator

cone_layer — The primary field layer simulating radiation
dir_out — The directory to save the images to.
cone_size_ mm — The field size of the radiation field in mm

final_ layers — Layers to apply after generating the primary field and BB layer.
Useful for blurring or adding noise.

bb_size_mm - The size of the BB. Must be positive.

offset_mm_left — How far left (lat) to set the BB. Can be positive or negative.
offset_mm_up — How far up (vert) to set the BB. Can be positive or negative.
offset_mm_in — How far in (long) to set the BB. Can be positive or negative.
image_axes — List of axis values for the images. Sequence is (Gantry, Coll, Couch).

gantry_tilt — The tilt of the gantry that affects the position at 0 and 180. Simulates
a simple cosine function.

gantry_ sag — The sag of the gantry that affects the position at gantry=90 and 270.
Simulates a simple sine function.

328

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* clean_dir — Whether to clean out the output directory. Useful when iterating.

5.17 Topics

5.17.1 Images

Pylinac deals nearly exclusively with DICOM image data. Film has been actively avoided where possible because of
1) the increased use and technological advances of EPIDs. EPID data also contains useful tags that give contextual
information about the acquisition (unless you use Elekta). And 2) film images tend to be much messier in general;
they often have markings on them such as a pin prick, marker writing to identify the image, or flash on the edges of
the image where the scanner and film edge did not line up.

How data is loaded

Pylinac uses the excellent pydicom library to load DICOM images. The pydicom dataset is actually stored in pylinac
images under the metadata attribute, so if want to access them, they’re there.

Pixel Data & Inversion

This is the most common issue when dealing with image analysis. The inversion, meaning the pixel value to radiation
fluence relationship, of pylinac images used to be a simple imcompliment, meaning inverting the data while respecting
the bit ranges, since most images’ raw pixel data was inverted. However, to handle newer EPID images that included
more and better pixel relationships, this has changed in v3.0.

Note: The axiom for pylinac (for v3.0+) is that higher pixel values == more radiation == lighter/whiter display

Assigned pixel values now have the following logic:

If the image has the Rescale Slope, Rescale Intercept and the Pixel Intensity Relationship Sign attributes, all of them
are applied with a simple linear correction: P.,precteq = Sign * Slope * Ppraw + Intercept Images from newer
linac platforms appear more likely to have this attribute.

If the image only has the Rescale Slope and Rescale Intercept but not the relationship tag then it is applied as:
P.orrected = Slope * Prq + Intercept. This is the most common scenario encountered to date.

Note: It is possible that the slope has a negative value which is implicitly applying a relationship and would be
equivalent to the first case, however, older images often have a simple positive slope relationship.

If the image does not have these two tags, then an imcompliment is applied: newarray = -—oldarray +
max(oldarray) + min(oldarray). Very old images will likely reach this condition.

Note: If your image appears to be incorrectly inverted, missing tags are likely why. Pylinac has parameters to force
the inversion of the image if the end result is wrong. Furthermore, some modules perform another inversion check at
runtime. This is mostly historical but was done because some images were always expected to have a certain relation-
ship and the tag logic above was not applied consistently (both new and old images were imcomplimented, causing
differences). For those modules, tags were not used but a simple histogram analysis which expects the irradiated part
of the image to be either centrally located or most of the image to NOT be irradiated. This is how pylinac historically
worked around this issue and got reliable results across image eras. However with this new logic, there may be analysis

5.17. Topics 329

https://dicom.innolitics.com/ciods/ct-image/ct-image/00281053
https://dicom.innolitics.com/ciods/ct-image/ct-image/00281052
https://dicom.innolitics.com/ciods/rt-image/rt-image/00281041
https://dicom.innolitics.com/ciods/ct-image/ct-image/00281053
https://dicom.innolitics.com/ciods/ct-image/ct-image/00281052

pylinac Documentation, Release 3.8.2

differences for those images. It is more correct to follow the tags but for backwards compatibility the module-specific
inversion checks remain.

5.17.2 XIM images

Images ending in . x im are generally produced by a Varian TrueBeam or newer linac. They are images with additional
tags. Unfortunately, they are written in binary into a custom format so using a typical image library will not work.

The binary file specification appears to be unofficial, but it does work. You can find the spec here which comes from
this repo: https://bitbucket.org/dmoderesearchtools/ximreader/src/master/

Warning: Rant ahead.

The XIM images used a custom compression format. Why they chose to use a custom format is beyond me. Moreso,
the format they chose was that of a PNG algorithm. So, XIM images are just PNG images but with a custom lookup
table and property tags. A TIFF format would’ve worked just as well. It’s possible this is security by obscurity or NIH
syndrome.

Loading an XIM image

To load an XIM images use the XTI class:

from pylinac.core.image import XIM
my_xim_file = r"C:\TDS\H12345\QA\image.xim"
xim_img = XIM(my_xim_file)

plot the image
xim_img.plot ()

see the XIM properties
print (xim_img.properties)

Reconstructing the image pixels is relatively slow (~1s for AS1200 image) thanks to the custom compression format,
so if you are only searching through the properties you can skip reconstructing the pixels. Skipping the pixels and only
reading the properties is relatively fast (order of milliseconds):

from pylinac.core.image import XIM

my_xim_files = [r"C:\TDS\H12345\QA\image.xim", ...]
files_to_analyze = []
for file in my_xim_ files:
will load relatively fast
xim_img = XIM(file, read_pixels=False)
if xim_img.properties['AcquisitionMode'] == 'Highres':
files_to_analyze.append(file)

now load the pixel data only for the files we're interested in
for file in files_to_analyze:
xim_img = XIM(file)

(continues on next page)

330 Chapter 5. Contributing

https://bitbucket.org/dmoderesearchtools/ximreader/raw/4900d324d5f28f8b6b57752cfbf4282b778a4508/XimReader/xim_readme.pdf
https://bitbucket.org/dmoderesearchtools/ximreader/src/master/

pylinac Documentation, Release 3.8.2

(continued from previous page)

image is available, do what you want
xim_img.plot ()

An XIM has all the utility methods other pylinac image do, so use this to your advantage:

from pylinac.core.image import XIM

my_xim_file = r"C:\TDS\H12345\QA\image.xim"
xim_img = XIM(my_xim_file)

process

xim_img.crop (pixels=30)
xim_img.filter ()
xim_img.fliplr ()

Exporting images

Exporting .xim images is easy. The PNG format is recommended because its ~1/2 the size of the xim image and will
also include the properties. PNG images can usually be viewed easily across many devices and OSs and also loads
very fast.

from pylinac.core.image import XIM
my_xim_file = r"C:\TDS\H12345\Q0A\image.xim"
xim_img = XIM(my_xim_file)

xim_img.save_as ('myxim.png")
saved to PNG!

Reading exported images

To load the image in python you can use any library that reads PNG. Pillow is recommended. Opening these files are
usually very fast (order of milliseconds), so if you plan on doing research or analysis of a large number of .xim images,
it may be worth it to export to PNG en masse and then perform the analysis.

import numpy as np
import PIL.Image
import matplotlib.pyplot as plt

xim_img = PIL.Image.open('myxim.png')

numpy array of the pixels
xim_array = np.asarray (xim_img)

plot it
plt.imshow (xim_array)
plt.show()

To read the properties of a xim file that was saved to PNG we may to have to load from strings. PNG tags are all
strings, and some Xxim properties are arrays or numbers. In order to easily save it, we convert them all to strings. In
order to get the native datatype if it wasn’t originally a string is to use json:

5.17. Topics 331

pylinac Documentation, Release 3.8.2

import json
import PIL.Image

xim_img = PIL.Image.open ('myxim.png')

system_version = xim_img.info['AcquisitionSystemVersion']
"2.7.304.16" already a string so no change needed

couch_lat = xim_img.info['CouchLat']

'100.39021332'" it's a string even though it looks like a number
convert to the original type:

couch_lat_num = float (couch_lat)

MLCs are a list; we need json
mlc_a_string = xim_img.info['MLCLeafsA']

'[20.6643, 20.6992, ...]'
mlc_a_list = json.loads (mlc_a_string)
now it's a normal list: [20.6643, 20.6992, ...]

5.17.3 Contrast

Contrast is used in the catphan and planar imaging modules. There are two contrasts that are evaluated: high contrast
and low contrast. High contrast is also called spatial resolution, and refers to the ability of the device to resolve high
contrast objects that are abutting. This is usually measured with line pairs or a high-contrast point. Low contrast refers
to the ability of the device to measure differences between two similarly-attenuating materials. The materials and
regions need not be abutting as for high contrast.

Depending on who you ask/read, there are multiple definitions of contrast. For high contrast, this is less contentious
than low contrast. We describe here the equations used or offered in pylinac to calculate contrast.

High contrast

High contrast calculations are performed by analyzing multiple ROIs and calculating the maximum and minimum
pixel value from each ROI. An ROI is used for each high contrast region (e.g. each line pair region). The contrast is
first calculated, then normalized. The high contrast calculation uses the Michelson contrast, aka visibility. See here
for more comparisons: https://en.wikipedia.org/wiki/Display_contrast

Imax—Imin

ImaztImin

max (Imam_lm,in)

Imaz+tImin

where I = 1, ..., n line pair ROIs.

Low contrast

Low contrast calculations are also performed by analyzing multiple ROIs, but each ROI has only one value: the median
pixel value. These pixel values are compared to a reference ROI. However, that comparison is different depending on
who you ask. Previously, pylinac gave only the Michelson contrast as the low contrast option. However, there are now
multiple options available.

Note: The combination of low contrast and ROI size is handled in the next section. Do not confuse low contrast with
visibility/perception.

332 Chapter 5. Contributing

https://en.wikipedia.org/wiki/Display_contrast

pylinac Documentation, Release 3.8.2

For all below I is the given ROI and R is the reference ROI.
Michelson (default; good choice)

Imean - Rmean

Imean + Rmean

Weber
Imean - Rmean
Imean
Ratio
Imean
Rmean
Visibility

Visibility is the ability for humans to detect signal against noise. Visibility is a component of low contrast detectability.
Typically, low contrast is evaluated irrespective of the size of the object. However, as a phantom like the Las Vegas
or CatPhan 515 module shows, a large-sized object with small contrast might be seen, but a small-sized object of the
same contrast might not. This is referred to as visibility. Visibility in pylinac is a derivation of the Rose model, defined
here as:

NZE T
Visibility(I) = Contrast(I) x \/Area(I) ¥ DQE(I) = Contrast(I) * M
std

where contrast is an option from the low contrast methods and 7 * [3 is the area of the ROI, which is assumed to

adius
be circular.

Note: What is meant by “noise” is unclear in the literature. Technically, it was meant to be the detective quantum
efficiency (DQE). For simplicity and ease of understanding, the standard deviation works.

Note: Pylinac ROIs are smaller than that actual size of the contrast ROI on the phantom. Uncertainty in the phantom
detection algorithm means that the ROIs must be smaller to allow a small localization tolerance in the algorithm. Thus,
visibility is a very specific number that depends on the size of the sampling ROL.

Contrast-to-noise ratio

The contrast to noise ratio (CNR) is defined as follows:

_ Contrast(I) Contrast([)
CNR(I) = noise(I) — stdev(I)

where contrast is an option from the low contrast methods.

5.17.4 Modulation Transfer Function (MTF)

The MTF is used in CBCT and planar imaging metrics to describe high-contrast characteristics of the imaging sys-
tem. An excellent introduction is here: https://www.edmundoptics.com/knowledge-center/application-notes/optics/
introduction-to-modulation-transfer-function/ In pylinac, MTF is calculated using equation 3 of the above reference:

Imax - Imin

contrast = —————
Ima:x: + Imzn

5.17. Topics 333

https://www.osapublishing.org/josa/abstract.cfm?uri=josa-38-2-196
https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-modulation-transfer-function/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/introduction-to-modulation-transfer-function/

pylinac Documentation, Release 3.8.2

Then, all the contrasts are normalized to the largest one, resulting in a normalized MTF or tMTF (relative). Pylinac
only reports rMTF values. This is the first of two inputs. The other is the line pair spacing. The spacing is usually
provided by the phantom manufacturer. The rMTF is the plotted against the line pair/mm values. Also from this data
the MTF at a certain percentage (e.g. 50%) can be determined in units of Ip/mm.

However, it’s important to know what I,,,, and I,,,;, means here. For a line pair set, each bar and space-between is
one contrast value. Thus, one contrast value is calculated for each bar/space combo. For phantoms with areas of the
same spacing (e.g. the Leeds), all bars and spaces are the same and thus we can use an area-based ROI for the input to
the contrast equation.

5.18 Troubleshooting

5.18.1 General

Things always go wrong in real life. If you tried analyzing your data in pylinac and it threw an error, you can try a few
simple things to fix it.

* First, See if the demo works - If not, pylinac may not have installed correctly or you may not have a dependency
or the minimum version of a dependency.

* Second, Check the error - If it’s an error that makes sense, maybe you just forgot something; e.g. analyzing
an image before it’s loaded will raise an error. Asking for a gamma result of a fluence before calculating the
fluence will raise an error. Such things are easy to fix.

* Third, Check the Troubleshooting section of the specific module - Each module may fail in different ways,
and also have different methods of resolution.

* And if none of those work, Post a question on the forum - You may have found a bug and it needs fixing!

— Forum

5.18.2 Loading TIFF Files

Loading TIFF files can be tricky since there are many variations of the TIFF image format. Pillow is the package for
image I/O in Python and is what pylinac uses. But sometimes even Pillow has trouble. If you’ve tried loading a TIFF
file and it just doesn’t seem to be working you can try two things:

¢ Install pillow with conda; when installing this way more libraries are installed (vs. pip) that pillow can
leverage.

* Resave the image with another program. While I can’t tell you exactly what will work, one solution that’s
worked for me is using GIMP. It’s free; just open up your TIFF files and then export them back to TIFF. It may
not seem like that should change anything, but my anecdotal evidence is that every TIFF image that didn’t work
that I reconverted using GIMP allowed me to read it in, especially when combined with the above strategy.

5.19 Contributing

There are several ways you can contribute to the pylinac project no matter your skill level. Read on for more info.

5.19.1 Submitting bugs

The easiest way to contribute is to report bugs. Submit bugs via a Github issue here.

334 Chapter 5. Contributing

https://groups.google.com/forum/#!forum/pylinac
https://python-pillow.github.io/
http://www.gimp.org/
https://github.com/jrkerns/pylinac/issues

pylinac Documentation, Release 3.8.2

5.19.2 Submitting files

Another easy way to improve pylinac is to submit QA files for the testing repository. Files are treated anonymously
and are added to the test suite so that the package will become more robust. You can submit files here.

5.19.3 Suggesting ideas

Ideas are always welcome (though they might not get implemented). You can submit new ideas here.

5.19.4 Commit changes

Now you’re serious about contributing. Awesome! Pylinac has mostly had one maintainer but we are looking for
newcomers to contribute. There are a few things to know before contributing:

Make an issue first, whether it be for a bug fix or feature request. This helps track the progress and put it on the
roadmap appropriatly

See if there are any other tools out there that can solve the problem. We don’t want to write code just to write
code. Pylinac should solve a problem that no one else has solved, do it better than existing solutions, or do so
openly (vs closed).

Evaluate the work involved. This includes reviewing any existing modules or 3rd party tools that can help solve
the problem.

Start a new branch for the feature.

Propose the framework. This includes making the files and boilerplate for the new module/functions. This will
allow others to evaluate and make suggestions to the framework before the work actually starts.

Write the test framework. Same as the regular framework but defines the parameters and endpoints for the
module

Once the framework is agreed upon the code can start flowing. Get to it!

If you’re unsure, just ask.

5.20 Changelog

5.20.1 v 3.8.2

Using use_filenames with axis_mapping when instantiating Winston-Lutz would not respect the
use_filenames flag. Now, use_filenames takes precedent. Normally, these should not be used to-
gether since they are both trying to set the axis values.

5.20.2 v 3.8.1

The SNC phantoms (kV, MV, MV 12510) have had their ROI localization algorithms adjusted slightly. These
phantoms are commonly used with the acrylic jig. That jig is very dense and often causes issues detecting the
phantom separate from the phantom itself. This fix should remove the effect of the acrylic jig and allow any jig
to be used, assuming the central ROI area is not occluded.

5.20.

Changelog 335

https://forms.gle/sfrDXL3XhHsyiKeJ7
https://github.com/jrkerns/pylinac/issues

pylinac Documentation, Release 3.8.2

* Winston-Lutz axis-specific RMS calculations (“Maximum <Gantry | Collimator | Couch> RMS deviation”) from
the results and results_data method calls were potentially erroneous if the maximum error was in a
“Reference” image (gantry=coll=couch=0). Users are urged to upgrade if using these outputs. Note that the
Maximum/Median/Mean 2D CAX->BB distances are unaffected.

5.20.3 v 3.8.0

General

e .xim files are now able to be opened. These are Varian-specific images usually taken during MPC or in
service mode. Currently, it is not natively integrated into other analyses (e.g. analyzing a .xim picket-fence
via PicketFence (...)), but depending on the usage it will have more mainstream support in the other
modules. However, this will allow the user to export to other, common file formats like png, jpeg, and tiff as
well as access the properties of the .xim image such as acquisition mode, MLC positions, etc. Read about it
here: XIM images.

Image Generator

» The image generator module has had tests added to increase robustness as well as docstrings for the parameters.

* The RandomNoiseLayer has been adjusted to provide noise irrespective of the signal. Previously, the noise
was dependent on the intensity of the pixel. To be consistent with the intention of applying dark current, the
layer now adds noise consistently across the image. The default sigma value has been adjusted to be roughly the
same as before.

Picket Fence

* The PDF generated when the orientation was up/down would sometimes occlude the text on the report. The
image placement has been adjusted.

Winston Lutz
e The results_data () for a normal WL analysis now include the details of each image as well. Le.

Each winstonLutzResult contains N WinstonLutz2DResult , one for each image, under the
image_details key.

CBCT

e The MTF returned in results_data now includes 10-90 in steps of 10. Previously, only the 80, 50, and 30%
were reported.

5.20.4 v 3.7.2

Field Analysis

* Performing a field analysis on a very small field (a few mm) would error out. To get around this, pass a larger
slope_exclusion_ratiotoanalyze ().

336 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.20.5 v 3.7.1

Planar Imaging

e The SNC MV 12510 ROIs were slightly downscaled. This caused an issue in contrast and CNR calculation
being lower than reality by ~20%. It was introduced in v3.6. Users are encouraged to upgrade if using this
specific phantom analysis.

5.20.6 v 3.7.0
General

* Logos can now be passed to any publish_pdf method to insert a custom logo (e.g. an institution logo). The
size of the logo as it appears on the PDF is fixed.

Picket Fence

¢ The max_error_picket and max_error_leaf have been added to the results returned from <pf>.
results_data().

* Elekta MLC options have been added to the ML.C enum.

Planar Imaging

¢ Inversion detection for the Leeds and PTW EPID QC phantoms have been improved.

Warning: If you are passing invert=True to the analyze method for these phantoms double check the
outcome. There is a good chance that parameter can be removed.

* An angle check has been added to the SNC kV phantom. Previously, the angle was hardcoded at 135 degrees
per the manufacturer recommendation. It now checks the detected angle. If the value is 135+/-5 degrees the
detected angle is passed, otherwise an error is thrown.

CBCT

* The phantom center detection was refactored. This was because the RadMachine jig was touching the CatPhan
and causing detection issues on a handful of slices. Unfortunately, these few handful of slices were important
to the detection algorithm as they occurred around the HU linearity module for the 604. The phantom center
of each slice along the Z axis (in/out) is now detected by fitting a 1D polynomial for all the slices where the
phantom is detected. l.e. x, y = £ (z). This removes some of the error associated with having something
touching the phantom for just a few slices. E.g. a clinic was using BBs on the side of their Catphan for alignment
which was causing issues. Situations like these are more likely to be recovered from.

Note: This change is internal and should not cause issues; all tests passed without modification but there is a
small possibility a dataset with some kind of interference will now analyze and cause detection issues.

5.20. Changelog 337

pylinac Documentation, Release 3.8.2

5.20.7 v 3.6.3
CBCT

* Cropping a catphan dataset before analysis would result in an analysis failure.

 Datasets that had a deep-curve couch very close to the phantom (e.g. head cradles) would fail.

5.20.8 v 3.6.2
CBCT

* The phantom center detection was refactored. This was because the RadMachine jig was touching the CatPhan
and causing detection issues on a handful of slices. Unfortunately, these few handful of slices were important
to the detection algorithm as they occurred around the HU linearity module for the 604. The phantom center
of each slice along the Z axis (in/out) is now detected by fitting a 1D polynomial for all the slices where the
phantom is detected. l.e. x, vy = £ (z). This removes some of the error associated with having something
touching the phantom for just a few slices. E.g. a clinic was using BBs on the side of their Catphan for alignment
which was causing issues. Situations like these are more likely to be recovered from. .. note:

This change is internal and should not cause issues; all tests passed without,
—modification but there is a small possibility a dataset with
some kind of interference will now analyze and cause detection issues.

5.20.9 v 3.6.1

¢ Fixed a bug with the SNC MV phantom analysis where the ROI scaling for the entire phantom was slightly
over-sized.

5.20.10 v 3.6.0
Planar Imaging

* Planar analyses had a discrepancy in the number of low-contrast ROIs “seen” in the plot vs what was given in
the numerical results. This is because the numeric results were still using the older method of contrast analysis,
which does not take into account the ROI size. The plot uses the newer method of Visibility. The quantitative
results have been changed to use the visibility.

Warning: Your detected ROIs may be different moving forward, although the visibility default value in the
analyze () method was chosen to be as close as possible to the existing contrast results, meaning that the
ROIs should be similar out of the gate. If you’d like to still use the older metric it is still available:

num_rois_simple_contrast = sum(roi.passed for roi in <my_planar_phantom>.low_
—scontrast_rois)

Picket Fence

e The max_error leaf property will now return an int, where previously it returned a single-element
list for classic/combined analysis. l.e. doing <pf>.max_error_leaf used to return something like

338 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

[42] but now returns 42. The signature type has also been updated to reflect this. This change allows
the user to do this: <pf>.plot_leaf_profile(leaf=<pf>.max_error_leaf, picket=<pf>.
max_error_picket). Previously, this would fail because the max_error_leaf was a list and the user
would havetodo . ..leaf=<pf>.max_error_leaf[0]....

Note: Users that perform “separate” analysis are unaffected (.analyse(...
separate_leaves=True).

Winston-Lutz

* The BB-finding algorithm has been hardened and can now find the BB even in the presence of artifacts such as
the couch. This most often applies when very large fields are used. A side effect is that the BB-finding algorithm
is also now faster and reduces analysis time up to 50%.

¢ The machine coordinate system/scale can now be given as a parameter. This will affect the BB shift vector
and shift instructions. The default scale is IEC61217, which was the implicit default previously and is thus
backwards-consistent. A small section has been added here: Passing a coordinate system.

* Due to the above change, there is no need for the couch_angle_varian_scale property of the
WinstonLutz2D class. It has been removed to reduce confusion. Use the new feature above if you had
been using/overriding this property.

* A bug was fixed where repeating analysis would give different results. This was because the image pre-
processing was being performed each time .analyze() was called. This only applies if you perform .analyze()
more than once on the same instance.

Catphan

* The Catphan 600 MTF algorithm had a bug of not using the correct “windows” of peaks/valleys when finding
the MTF. Each CatPhan model’s high-resolution pairs are at slightly different angles. The 600 was inadvertently
using the 504’s window positions. This has been updated to use the correct windows. The problem can be
visualized below, where the red lines show each MTF resolution window previously, vs the green which is the
updated window. The result is that MTF will now be lower than previously because the old windows were
sometimes including a peak of the previous line pair, causing the apparent MTF value to be higher than it really
was.

Warning: MTF values for the CatPhan 600 will now be ~15% lower than previously due to this bug fix.

Field Analysis

* A visual bug was fixed with the blue ROI display. The horizontal ROI was being offset slightly based on the
vertical width. This only applied when the width of the horizontal and vertical parameters were different and is
completely visual. No quantitative results are affected.

 The statistics from the central area within the horizontal and vertical windows is now reported. L.e. the stats
from the pixel values within the overlap of vertical window and horizontal window are now available like so:

fa = FieldAnalysis(...)
fa.analyze(...)
results = fa.results_data()

(continues on next page)

5.20. Changelog 339

pylinac Documentation, Release 3.8.2

— 0Old Windows
n n — New Windows

\ P

600

200 A

O_M,de

T
0 200 400 600 800 1000

(continued from previous page)

results.central_roi_max
results.central_roi_mean

The stats are also available directly from the FieldAnalysis instance:

fa = FieldAnalysis(...)
fa.analyze(...)
fa.central_roi.mean
fa.central_roi.max

If the width is O for both parameters a 2x2 matrix is sampled around the central pixel.

Core

e The RectangleROT class now has additional statistical results available computed from the pixel array: .
mean, .std, .min, .max.

5.20.11 v 3.5.0

Planar Imaging
* Older SNC MV phantoms (observed as model #1251000) can now be analyzed with the new SNCMV12510.
They have a slightly different size and ROI locations but appears to be functionally the same.
* The IBA Primus A phantom is now supported.

e Planar image analyses now take into account the image SAD; previously this was assumed to always be
1000mm. This only affects users with non-standard SADs such as proton gantries. Linac-based users should
see no difference.

340 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* Most planar phantoms will now show an “x”” marker on the analyzed image showing the detected center of the
phantom. This can help in evaluating the algorithm’s accuracy in phantom detection.

* Two methods, window_floor and window_ceiling, were added to the image analysis classes. This lets
the user define the min and max values of display for plotting the image. These are convenience functions only
and currently only affect the Primus phantom, but will likely be adopted for the other phantoms.

Core
* A source-to-axis sad property was added to the DicomImage class. This property looks up the “Radiation-
MachineSAD” tag. This was added because non-1000mm SADs are being encountered.

e The dpmm property now takes into account the SAD (see above). Previously, the SAD was assumed to be
1000mm. For Linac users there will be no visible change.

Bug Fixes

* The PDFs from planar imaging analyses would have the text collapsed to one line. This has been fixed.

* The planar imaging module was starting to use scikit-image attributes that were introduced in 0.19 inadvertently.
This has been fixed. For previous versions, update scikit-image to v0.19 or higher.

5.20.12 v 3.4.0

Picket Fence

* There is now a skew () method, returning the skew of each picket.

Planar Imaging

* A new class for analyzing older Leeds phantoms that have a blue label on the back (vs the red ring) has been
added: LeedsTORBlue

Winston-Lutz

e The cax2bb_distance () method can now accept mean for the metric.
e The cax2epid distance () method can now accept mean for the metric.

e The results data () now includes the mean CAX->BB distance and mean CAX->EPID distance.

CT

e The CatPhan600 detection has changed to use the bottom Air ROI and the Teflon ROI (just to the right of
bottom air ROI). This is because the top air ROI can sometimes (and purposefully) contains a water vial. When
inserted, the water vial makes angle detection untenable using this ROI. The result should be <0.5 degrees
difference from previous versions, however, it was never 0. The only result this should affect (other than the
angle) is the very small ROI low-contrast detection values, as it was found that even with a few tenths of
degrees, a single pixel or two would be included or excluded compared to the previous algorithm. This is really
areflection of the sensitivity of the noise, which should likely use a global noise value instead of the local noise.

5.20. Changelog 341

pylinac Documentation, Release 3.8.2

5.2

* Related to above, the same class now will have an extra ROI “Vial” with an expected value of 0. However,
if the detected ROI is closer in value to air than water, the ROI will not be evaluated. This gives backwards-
compatibility with existing scans that don’t use the vial. Le. if you don’t use the water vial nothing should be
different.

0.13 v3.3.0

Core

Fiel

¢ 1D gamma evaluation between two profiles can now be performed via the new gamma () function.

* Resampling of ‘‘SingleProfile‘‘s can now be done with the resample () function. This allows the user to
resample a profile after it’s already been created to achieve a specific interpolation resolution.

d Analysis

e The DeviceFieldAnalysis class has been removed. Only the SNC Profiler was supported and even then it
didn’t work very well. Further, RadMachine is utilizing profile/file parsing that will be brought to pylinac. This
new generalized scan parsing will eventually restore similar behavior, but for now it is deprecated. Sorry

Planar Imaging

* The SNC FSQA light/rad phantom is now able to be analyzed. Docs can be found here: SNC FSQA.

Bug Fixes

e #1705 - PDDx for measurements with no lead and PDD < 75 would calculate using the interim equation of
1.267*pdd - 20. This should return the PDD if the PDD<75. This will result in ~0.3% difference for I0MV with
PDD just under 75. Depending on the chamber you’re using, this could result in a difference of kQ by ~0.0005.

e The planar imaging detection routines have slightly improved robustness. This was caused by using scikit-
image’s major_axis_length property, which is somewhat more finicky than other properties. The detec-
tion now uses the area_bbox property which appears to curb some edge-case phantom analyses. This should
not affect results for images that are already detected properly.

 Linear and Spline interpolation for SingleProfile contained an error in how it was interpolating data (it
wasn’t) at the very edges. The problem is that if we upsample, the left and right ends are not equally sampled.
E.g. upsampling a 3-pixel array (0, 1, 2) by 10 normally results in ~20 elements. You interpolate between O
and 1, and 1 and 2. The first issue is that you do not have a simple X proportion of elements (3 * 10 = 30 but
we get 20). Additionally, if these are pixels they have a finite, physical size and technically those values are at
the center of the pixels. Thus, you actually need to sample beyond the left and right edges. In the above case
you’d really need to sample from approximately -0.5 to 2.5 to get ~10 pixels for each original pixel. We also
need to offset the x-values to be back to 0 again from -0.5. We solve this by offsetting the new x-values by
a proportion of the sampling ratio. A ratio of 1 (identical sampling) should not have any offset and return the
same values. As the ratio goes up, we approach the limit of 0.5 pixels. This follows a proportional relationship
with the ratio. The end result actually does not change much in the way of measurement results as nearly every
previously-existing tests passed. 2 out of ~50 field analysis tests had a slightly different penumbra measurement
and 1 had a slightly changed vert symmetry.

342

Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.20.14 v 3.2.0

General
* The codebase as been blackened. This does not affect functionality but will change code line numbers when
comparing to previous versions.

¢ All internal imports have been converted to relative imports. This does not change functionality but does mean
that the pylinac repo can now be easily forked and included as a package in RadMachine. This would typically
be done to use a pinned version as the embedded pylinac in RadMachine is updated regularly.

* Pylinac has dropped support for Python 3.6, following the security support timetable. 3.7 support will drop in
the next version after June 2023.

Planar Imaging
e The IMT L-Rad light/rad phantom is now able to be analyzed. It is part of the planar imaging module. Docs are
here.

¢ The SI QCkV phantom was accidentally analyzing the reference/background ROI. This resulted in a contrast of
0 for the first ROI all the time. This has been removed from the results. Calculations using the average contrast
will be affected. Existing ROI analysis values are not affected, but will be off by one if accessing the roi directly.
Le. “roi 3” is now “roi 27, etc as the reference ROI was originally “roi 1.

CT

* The Quart phantom can now be analyzed. Docs are Zere.

* The ACR CT and ACR MRI Large phantom can now be analyzed. These should be considered experimental
and subject to breaking changes in future versions until substantial data/tests can be had. Docs are here.

e The catphan and quart classes have a new attribute: hu_origin_slice_variance. This allows users to
override the acceptable variance used to find the HU linearity module. Existing functionality is not changed.

Winston-Lutz

¢ Axis data can now be passed in as a dictionary. This is mostly for Elekta users. This is an alternative to renaming
files. See the updated section on passing in data.

* The ImageManager class has been removed. The functionality has been absorbed into the existing classes.

5.20.15 v 3.1.0
General

* For the picket fence, field analysis, and planar imaging modules, image keyword args can now be passed on
instantiation. This is helpful for images that don’t have even basic tags like DPI/DPMM or SID. The keyword
args that can be passed are those consumed by load ().

from pylinac import PicketFence

path = ... # very sad image that has no DICOM tags for DPI or SID
pf = PicketFence (path, image_kwargs={'dpi': 184, 'sid': 1500})
pf.analyze ()

5.20. Changelog 343

https://github.com/psf/black
https://endoflife.date/python

pylinac Documentation, Release 3.8.2

* Matplotlib keyword args can now be passed to most modules that save a figure, allowing the user to specify the
figure size and other parameters

from pylinac import LeedsTOR

leeds = LeedsTOR. from_demo_image ()
leeds.analyze ()
leeds.plot_analyzed_image (..., figsize=(10, 10)) # figsize is passed to_,

—matplotlib to generate a figure of said size

* Pylinac is now compatible with scikit-image 0.19

Picket Fence

* Individual leaf errors (on each side of the picket) can now be analyzed. New parameters were introduced to
add this and related information needed to compute this. For backwards-compatibility this is set to False. See
the picket fence documentation and analyze () parameter descriptions, specifically the separate_leaves
and nominal_gap_mm parameters.

* Algorithm benchmarking has been added to the PF docs.

Planar Imaging

* The Standard Imaging FC-2 light/rad phantom is now able to be analyzed.

* The Las Vegas contrast analysis has been reverted to pre-3.0 behavior. This is because there is no reference
position like there is for other phantoms. Mistakenly, the “reference” was set to the first ROI, but because
visibility is dependent on both ROI size and contrast for Las Vegas, the background ROIs outside the milled disc
areas have been restored.

¢ Plots can now be separated. Use .plot_analyzed_image (... split_plots=True). This will now
show multiple matplotlib plots.

* You may save analyzed images to individual files. I.e. when splitting per above each plot will be saved to a
separate file. See save_analyzed image (). This will return the filenames on disk.

* Finally, you may save split plots to stream using to_streams. This will return a dictionary of the plot name
(image, low contrast, ...) and stream.

Field Analysis

* The plotting behavior described above for planar imaging is also true now for field analysis.

* Passing a string for centering, interpolation, edge and normalization methods is now an option. E.g. <field
analysis instance>.analyze (..., centering='manual', ...).

CBCT

* The catphan module can now accept a list of paths on instantiation. E.g. Catphan504 ([pathl, path2,
path3, ...1).

344 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

Winston-Lutz

e The plot_summary () method now allows you to pass a figure size.

* With the above, save summary () also allows you pass the figure size.

Bug Fixes

* #1464 - Off-center CBCT could give faulty slice thickness numbers. The row/col were inverted for the sampling,
meaning the left ROI was really sampling the top ROI and vic versa. For an on-center catphan, this would not
change the results. Results appear to only have changed if the catphan was 5+ mm off-center. The change of
outcome for offsets large than this are indeterminate but likely you weren’t getting good results to begin with
under that scenario, so it should only improve.

» #405 - The picket fence results () were reporting the wrong picket for the maximum error. It was selecting
from a wrongly-ordered list, instead giving the picket with the least error. Note that the maximum error value
was not incorrect, only the reported picket.

* PDF generation for field analysis with a device (i.e. SNC Profiler data) would fail as there was no true image.
The PDF generation simply skips the image plotting for devices now.

e #416 - The CBCT docs now correctly state that the slice thickness is based on all the wire profiles, not just the
longest two.

» #408 - The Dynalog isoplane correction factor was changed from 1.99614 to 1.96078 to match Varian docu-
mentation. This should have a difference of <0.3% of positioning error and should not affect gamma (since the
errors canceled out) but would affect comparison to a TPS fluence.

5.20.16 v 3.0.0

Warning: Version 3.0 contains numerous breaking changes (hence the increment). Review the changelog before
upgrading.

General

* A new method, results_data has been added to most modules (excluding calibration and log analyzer).
This is complementary to results. results_data will return a dataclass or dictionary, which includes
pretty much everything in results as well as metadata (e.g. pylinac version). This dictionary will be useful
for APIs and referencing certain information that will be more stable across versions . Thanks to @crcrewso for
the suggestion.

* Nearly all major modules can now handle file objects and streams (Dynalogs cannot yet). These may be passed
as would a disk file path.

with open ("mystarshot.dcm", 'rb') as f:
star = Starshot (f)

* Enums have been added in numerous places to mostly replace string options. E.g. for picket fence instead of
specifying “up-down” as the orientation literally, the user now has the option to pass an Enum:

from pylinac.picketfence import PicketFence, Orientation

(continues on next page)

5.20. Changelog 345

https://github.com/crcrewso

pylinac Documentation, Release 3.8.2

(continued from previous page)

pf = PicketFence(...)
pf.analyze(..., orientation=Orientation.UP_DOWN) # specify the orientation via,,
—an Enum

The advantage here is two-fold: 1) introspection/autocompletion using your IDE vs remembering/looking up
documentation, 2) easier to generate documentation as now we can point to a class with the options. Note
however that string options are still available for backwards compatibility.

pf = PicketFence(...)
pf.analyze (..., orientation='Up-Down') # specify the orientation via a string._
—Works the same as above

Assuming you’d like to use the string version instead of using enums all over, how do you know the options?
Go to the auto-generated documentation of the enum! =) E.g. Orientation.

Note: Relying on your IDE is a good idea. A smart one can warn you of incompatible data types.

The github repo has been “minified” by removing excess demo files and also removing the basic test files. These
files are now cloud-hosted and downloaded as needed. This makes git clone significantly faster since the
repo size has been reduced from ~1.6GB to ~60MB. Note that this does not affect the pip package since that
package already had most of this excess data removed.

Image inversion detection has changed slightly. Some images have proper tags such as rescale slope and inter-
cept. If they do have the tags, they are applied and no inversion is applied. If they do not have the tags, an inver-
sion is then applied. Previously, the tags were applied if they were there, and nothing if not and inversion was
ALWAYS applied. This should result in better inversion defaults for images from different machines/platforms
and fewer invert=True additions. See /mages.

A CONTRAST enum has been added that can be used for low-contrast analysis of planar images and CBCT
images. See Contrast.

from pylinac.core.roi import Contrast
leeds = LeedsTOR(...)

leeds.analyze (..., low_contrast_method = Contrast.WEBER)

ct = CatPhanb504(...)
ct.analyze (..., contrast_method = Contrast.MICHELSON)

The algorithm for low contrast contrast constant detection has changed slightly. See Visibility. This means the #
of detected low-contrast ROIs may change for cbct. You may pass in a contrast technique per above and also a
visibility threshold. See the .analyze method of the respective class.

The contrast-to-noise property of the LowContrastDiskROI now uses contrast/stdev, where contrast is de-
fined/chosen per above.

Several LowContrastDiskROI properties have been deprecated such as contrast_constant. Use
visibility instead. The old properties still work but come with a deprecation warning and will be removed
in a future release.

#270 Pylinac had a memory leak that was apparent when running on a server. This was caused by old instances
being held in memory from and incorrect usage of the 1ru_cache. This has been fixed.

Documentation about topics has been added Topics.

346

Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/270

pylinac Documentation, Release 3.8.2

Documentation benchmarking several algorithms has been added. See the “Benchmarking the Algorithm” sec-
tion for vmat, winston-lutz, and starshot modules. Picket fence will come soon.

Note:

Upgrade Hints

Besides the above notes and any module-specific steps, due to the modified method of loading images and inversion,
other downstream modules may be affected. This means that some images that needed invert=True before may
not need it, and some images that previously worked may need an invert=True. So generally, if the image fails
when it passed with previous versions, try adding/removing forced inversion first. This should only be an issue for
older images. Images generated on new linac platforms should be handled just fine.

Dependencies

A new dependency has been added: cached_property.

Field Analysis (previously Flathess/Symmetry)

Danger: This release introduced numerous breaking changes to this module. Existing code will break.

Two classes are now offered: FieldAnalysis and DeviceFieldAnalysis.

Many, many options were added to the analyze () method. See below and the documentation page for all the
details.

The f1at symmodule has been renamed to field_analysis to reflect the generalized nature of the module.
Many thanks to Alan Chamberlain (@alanphys) for suggesting and doing the initial implementation for this.
This also introduced some early support for NCS-33 , which gives guidance on FFF beams.

From the above report, a “top” position as well as field slope values are calculated for FFF beams. See FFF
fields.

The new module can handle files from devices, specifically the SNC Profiler. See loading_device_data.

Extensibility was greatly enhanced. Users can now easily add their own custom analysis routines to the module.
See Creating & Using Custom Protocols.

New options for Centering, Normalization, Edge detection, and Interpolation were introduced. Each of these
can be granularly controlled.

VMAT

Leveraging the new profile module, the field edge detection has been improved and can detect “wide-gap” or
overlapping ROIs more robustly.

Calibration

#353 The bounds for most functions/methods have been converted to constants. This lets users override the
default values should they wish it.

5.20.

Changelog 347

https://github.com/alanphys
https://github.com/jrkerns/pylinac/pull/332
https://radiationdosimetry.org/files/Prepublication_-_NCS_Report_33_Beam_parameters_V2020-07-29.pdf
https://github.com/jrkerns/pylinac/issues/353

pylinac Documentation, Release 3.8.2

Winston-Lutz

#3606 #333 The analysis will fail if the BB is not detected within 20mm of the center of the field. This should
help artifacts from being detected.

The Winston-Lutz analysis has added an . analyze routine, just like all other major modules.
#358 The user can now pass in an expected BB size. This will help analyses with smaller or very large BBs.

The WLImage class has been renamed to WinstonLutz2D. This is to clarify usage as now documentation
has been expanded to show using WL with a single image.

: Upgrade Hints

Replace any uses of axis constants (GANTRY, COLLIMATOR, etc) with the enum version: Axis.GANTRY, ...
Adda <instance>.analyze (...) call to each WinstonLut z instantiation.

Set the BB size if needed. The algorithm has a default of Smm and is relatively forgiving (+/-2mm), but for very
small BBs you should set it lower than the default of Smm. E.g. .analyze (bb_size_mm=3)

If using WLImage, rename to WinstonLutz2D. Add .analyze () calls as well as appropriate.

/0

An SNC Profiler file parser has been added: pylinac.core.io.SNCProfiler. This can be used stan-
dalone, but since the data is not encoded to begin with it’s really about handling it as a tool for other modules.
Currently, this is being used in the Field Analysis module.

from pylinac.core.io import SNCProfiler

snc = SNCProfiler ("path/to/data.prs")
snc.data # ndarray
X, y, pos, neg = snc.to_profiles() # returns SingleProfiles

Planar Imaging

Sun Nuclear kV and MV phantoms have been added to the arsenal.
The PTW EPID QC phantom has been added to the arsenal.
The Standard Imaging QC-kV1 phantom has been added to the arsenal.

#339 The user can now pass an SSD value for their phantoms. The default is 1000mm, but if you set it on your
panel you can pass something like 1400mm.

The phantom-finding algorithm has been refactored to be more extensible. This does not affect normal users,
but reduces the amount of duplicate code. It also makes adding new phantoms easier.

Generally speaking, the phantoms should all be roughly centered along the CAX. Previously, the phantom could
be offset from the CAX. Due to general difficulty in finding the phantom reliably for the majority of clinics, I am
enforcing this as a restriction. This shouldn’t affect too many people but should make the ROI-finding algorithm
better.

The low contrast background ROI (i.e. the base level of contrast) has been adjusted for some phantoms (QC-3
and Doselab). Previously, it could either be in a “dark™ region, meaning a high-attenuation area, or a “light”
region, meaning a low-attenuation area. This has been standardized for all phantoms to be the “light” region. A
new doc page for contrast has been added to the online documentation.

348

Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/366
https://github.com/jrkerns/pylinac/issues/333
https://github.com/jrkerns/pylinac/issues/358
https://github.com/jrkerns/pylinac/issues/339

pylinac Documentation, Release 3.8.2

3 more high-contrast ROIs have been added to the LeedsTOR to help get rMTFs below 50%.

The ST QC-3 analysis will now handle both typical orientations (gantry 0 and 90), where the “1” is pointing
toward the gantry. This produces two different angles. The phantom should still be angled at 45 degrees from a
cardinal angle.

Note:

Upgrade Hints

If you have defined any custom phantoms, read the new documentation: Creating a custom phantom. Your
existing code will likely NOT break but the new format is much easier for extensibility.

Evaluate the new contrast values versus your existing ones for the QC3 and Doselab phantoms. Moving forward,
the above definition of contrast ROI-picking will be used.

For the LeedsTOR, check the MTF of an existing image. Since adding more high-contrast ROIs, the rtMTF may
change if you were using a value below the lowest detected value. You do/will get warnings about being below
the minimum MTF if you already do so.

Picket Fence

Overall, most code shouldn’t need to change from v2.5. From v2.4 or below, the way MLCs are passed and used has
changed.

Wide-gap tests should now work better than before. However, please read the Acquiring good images section.

The mlc parameter of the PicketFence constructor has been changed to use an Enum or
MLCArrangement: MLC. See the Customizing MLCs section for more.

A crop_mm parameter has been added to the PicketFence constructor. This is for cropping the edges of
images. The primary cause of issues with the PF module is dirty/noisy/dead edges.

The orientation parameter of the analyze method has been changed to use an Enum or str:
Orientation.

A required_prominence parameter has been added to analyze. This is to prevent multiple peaks detec-
tion for wide-gap images.

A fwxm parameter has been added to analyze. This is to allow the user to set the FWXM height to use for
the MLC kiss profile.

A results_data method has been added. See General above.

The colored rectangular overlay has been reduced in size slightly.

CBCT

A contrast parameter was added to analyze. This uses an Enum and has 3 options; see Low contrast.

A visibility_threshold parameter was added and is a replacement for cnr_threshold. See the
General section and Visibility. Compared to cnr_threshold, the default value will give approximately the
same results for # of low-contrast ROIs “seen”. About 30% of the test datasets had a different # detected, but the
detected vs expected number were either too high or too low, so there was no single value to perfectly replace
the default cnr_threshold value.

With the above, the contrast calculations have been standardized. Compared to previously, the contrast and
contrast-to-noise now use the same equation for contrast. Previously, contrast was using the Michelson equation
and contrast-to-noise was using the Weber definition. Now, contrast is always calculated with the definition
given during instantiation.

5.20.

Changelog 349

pylinac Documentation, Release 3.8.2

* ROI colors for low contrast ROIs that are “seen” have changed from blue to green to match other modules.

Note: Upgrade Hints
* Change/check the contrast method of .analyze().
* Change/check the visibility threshold of .analyze().

* Verify the # of low contrast ROIs “seen”.

Machine logs

» #161 Trajectory logs v4.0 are now supported

5.20.17 v 2.5.0

Warning: There appears to be an issue with reading TIFF images on Windows with libtiff=4.1.0. If you experi-
ence TIFF header errors, downgrade libtiff to <4.1.

General

* This release adds utility functions to the image generator module and also a change in configuration of the picket
fence module, allowing users to create their own MLC configurations.

Dependencies

* py-ling has been added as a dependency. It’s pure python so it will not add secondary dependencies.

Picket Fence

* MLC configuration has changed from being empirical to a priori, meaning that leaves are no longer determined,
but passed in via configuration. This allows users to configure their own custom MLCs arrangements. See
Customizing MLCs.

* Linked with the above, the is_hdmlc parameter is deprecated and users should now use the mlc parameter in the
constructor.

* Also due to above, new parameters have been added to the analyze method. Please see the documentation for
more info.

* The colored overlay is now broken up into the individual leaf kisses rather than one line.

 Several internal classes were removed or overhauled. This should not affect you if you’re just using the basic
routines like analyze(). Settings no longer exists, MLCMeas is now MLCValue. PicketManager no longer exists.

VMAT

* The ROI segment size can now be specified in analyze. This is discussed in the new section Customizing the
analysis.

350 Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/161
https://github.com/conda-forge/pillow-feedstock/issues/69

pylinac Documentation, Release 3.8.2

Image generator

In the previous release, a new image generator module was introduced. This release adds utility scripts for easily
creating Winston-Lutz and picket fence image sets. See the Helpers section of the generator documentation.

5.20.18 v 2.4.0

General

Thanks to several contributors for making pull requests in this release!

A new image generator module has been added. This module can generate custom test images easily: lmage
Generator.

The core peak-finding functionality used in several modules was refactored to use scipy’s implementation. When
pylinac was built, such a function did not exist. Now that it does, the custom code has been removed (yay!). The
major difference between this implementation and pylinac’s is the use of “prominence”, which is a concept I had
never heard of. The resulting peak-finding functionality is the same for max-value peak-finding. For FWXM
peak finding, this can have small differences. The biggest differences would be for profiles that have a very
asymmetric “floor”. Le. if one valley on one side of the peak has a very different value than the other side then
a difference would be detected. Fortunately, this is a very rare scenario.

Documentation plots have been updated to be generated on-the-fly. This will result in better agreement with
documentation plots vs. what people experience. Previously, some old figures were used that did not match the
functionality.

The GUI function was removed from the pylinac init file. This was causing issues when deploying to Heroku as
calls to tkinter caused failures. The GUI should be called from the submodule now:

old
import pylinac
pylinac.gui ()

new
from pylinac.py_gui import gui
gui ()

Dependencies

Two requirements have been bumped: scipy>=1.1 and scikit-image>=0.17.

CT Module

If you do not perform any advanced functionality, no changes are noteworthy.

The CT module has been reworked to be far more extensible to adjust individual component modules as desired.
Previously, only the offset of the modules was easily adjustable. To edit individual modules the user would have to
edit the source code directly. Now, the user can subclass individual modules, overload attributes as desired and pass
those to the parent CatPhan class. A new tutorial section has been added to the documentation showing examples of
this functionality.

The CTP404 and 528 modules have been refactored into CatPhan-specific classes for easier overloading by
appending “CP<model>". E.g. CTP404CP503.

5.20.

Changelog 351

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html

pyli

nac Documentation, Release 3.8.2

e CTP modules had an inconsistent naming scheme for rois. E.g. CTP404 had hu_rois and bg_hu_rois
while CTP515 had inner_bg_rois and rois. This has been standardized (mostly) into rois for all
modules and, where applicable, background_rois. Some modules still have more relevant attrs, e.g.
thickness_rois for CTP404, but they all have have rois.

* Due to the above refactor, you may notice small differences in the contrast constant value and thus the ROIs
“seen”.

» HU differences are now signed. Previously the absolute value of the difference was taken.

* HU nominal values have been adjusted to be the mean of the range listed in the CatPhan manuals. The changes
are as follows: Air: N/A (this is because most systems have a lower limit of -1000), PMP: -200 -> -196, LDPE:
-100 -> -104, Poly: -35 -> -47, Acrylic 120 -> 115, Delrin: 340 -> 365, Teflon: 990 -> 1000, Bone (20%): 240
-> 237, Bone (50%): N/A.

Flatness & Symmetry

The
sing

flatness & symmetry module has been updated to allow for profiles of a select width to be analyzed rather than a
le pixel profile.

* A filter parameter has been added to the constructor. This filter will apply a median filter of pixel size x.

* Due to the new peak-finding function, flatness and symmetry values may be slightly different. In testing, if a
filter was not used the values could change by up to 0.3%. However, when a filter was applied the difference
was negligible.

* Two new keyword parameters were added to analyze: vert_width and horiz_width. You can read about
their usage in the analyze documentation.

e The plot () method was renamed to plot_analyzed_image () to match the rest of the modules.

Watcher

The
solu

watcher script has been officially deprecated for now (it was broken for a long time anyway). A better overall
tion is to use something like QATrack+ anyway =).

Bug Fixes

5.2

» #325 The Leeds angle detection should be more robust when the phantom angle is very close to 0.
» #313 The catphan CTP486 module had an inverted top and bottom ROI assignment.

e #305 The Leeds invert parameter was not being respected.

 #303 Un-inverted WL image analysis would give an error.

» #290 Catphan HU linearity differences are now signed.

» #301 Loading starshots and picket fences from multiple images has been fixed.

 #199 Printing Picket Fence PDFs with a log has been fixed.

0.19 v23.2

Bug Fixes

e #285 The SI QC-3 module was incorrectly failing when the phantom was at 140cm due to a faulty mag factor.

352

Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/325
https://github.com/jrkerns/pylinac/issues/313
https://github.com/jrkerns/pylinac/issues/305
https://github.com/jrkerns/pylinac/issues/303
https://github.com/jrkerns/pylinac/issues/290
https://github.com/jrkerns/pylinac/issues/301
https://github.com/jrkerns/pylinac/issues/199
https://github.com/jrkerns/pylinac/issues/285

pylinac Documentation, Release 3.8.2

5.20.20 v 2.3.1
Bug Fixes

e #281 The ct module had a wrong usage of the new MTF module that caused a break.

5.20.21 v 2.3.0

General
» The dependencies have been updated. Scikit-image min version is now 0.13 from 0.12. There is also no upper
pin on numpy or scikit-image.
* The planar imaging module was overhauled.
* An MTF core module was introduced to refactor and standardize the MTF calculations performed across pylinac.

* The Winston-Lutz 2D and 3D algorithms were improved.

Winston Lutz

* The coordinate space definition has changed to be compatible with IEC 61217. This affects how to understand
the 3D shift vector. The bb_shift_instructions have been modified accordingly to still give colloquial
instructions correctly (i.e. “Left 0.3mm”).

e The WL module received an internal overhaul with respect to the 3D shift algorithm (i.e. the BB shift vec-
tor/instructions). The 3D algorithm was reimplemented according to D Low’s 1994 paper. Generally speaking,
the results are more stable across multiple datasets, however, you may see individual differences of up to 0.3mm.

* Due to above, the bb_<axis>_offset and epid_<axis>_offset properties have been removed.

* Two new image categorizations have been added: GB Combo and GBP Combo. These represent a
gantry/collimator combination image with the couch at 0 and gantry/collimator/couch image where all axes
are rotated. GBP Combo is a replacement for ALL. This change should only affect users who explicitly call
methods that ask for the image set like . axis_rms_deviation, .plot_axis_images, etc.

* A new property has been added: .gantry_coll_ iso_size which calculates the isocenter size using both
gantry and collimator images.

* A new property has been added to individual images: .couch_angle_varian_scale. This conversion
is needed to go from IEC 61217 to “Varian” scale for proper 3D shift vector calculation per the 3D algorithm
change. Users likely wouldn’t need this, but it’s there.

e The 2D CAX->BB vector is improved slightly (#268). Thanks to @brjdenis and @SimonBiggs for bringing
this to my attention and helping out.

Planar Imaging

e The Doselab MC2 (MV & kV) phantom has been added to the planar imaging module.

* The planar imaging module has been overhauled. The automatic detection algorithms have been spotty with no
easy way of correcting the inputs. Further, each phantom had a few subtle differences making them just different
enough to be annoying.

* To this end, the phantom classes have been refactored to consistently use a base class. This means all main
methods behave the same and give a standardized output.

5.20. Changelog 353

https://github.com/jrkerns/pylinac/issues/281
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.597475

pylinac Documentation, Release 3.8.2

Creating new custom phantom classes is now very easy. A new section of the planar imaging documentation
has been added as a guide.

A results method has been added to the base class, thus inherited by all phantom classes.
The parameter hi_contrast_threshold has been refactored to high_contrast_threshold.

The attributes lc_rois and hc_rois have been refactored to low_contrast_rois and
high_contrast_rois, respectively.

The analyze method now includes new standardized parameters angle_override, size_override,
and center_override. Each of these is exactly what it sounds like: overriding pylinac’s automatic algo-
rithm. This is useful if the automatic algorithm gives an incorrect value.

A phantom outline is now displayed on images. This outline is a simple representation and should only be used
as a guide to the accuracy of the phantom spatial detection. L.e. you can use this outline to potentially override
the center, size, or angle based on the outline.

The automatic rotation analysis of the phantoms has been problematic. After spending a significant amount of
time on the issue a satisfactory solution was not found. Therefore, the default angle or phantoms is that of the
recommendation of the manufacturer. I.e. for the QC-3 phantom this means 45 degrees, as is the value when
properly set up to the crosshairs.

High and low contrast ROIs now show as red if they were below the defined threshold.

Core Modules

* A new core module mt f has been created to standardize all MTF calculations in pylinac. Previously, these were

handled independently. The new module contains one class MTF with one method relative_resolution
to calculate the Ip/mm value at the passed rMTF percentage.

Bug Fixes

This release contains critical fixes. All users of the Winston-Lutz and VMAT modules are strongly encouraged
to upgrade as soon as possible.

#268 The Winston-Lutz BB-finding method contained an error that would cause the BB center to be slightly
off-center. After running unit tests, 5/16 datasets had a couch isocenter size difference of >0.2mm. Of those,
3 were around 0.2mm greater and 2 were around 0.2mm smaller. No other changes to iso sizes were detected
within the testing tolerance of 0.2mm.

#204 The VMAT module was sometimes using raw pixel values to calculate the ROI deviations. This would
cause the deviations to appear smaller than they should have been if the Rescale and Intercept had been applied
to the pixel data.

#280 The Winston-Lutz 3D BB shift vector was underestimating the shifts by ~30-40%. A new 3D algorithm
was implemented.

#275 Requirements no longer have an upper pinning, although scikit-image minimum version was bumped from
0.12 to 0.13.

#274 A new MTF module was created to refactor multiple ad hoc implementations.

#273 The CatPhan HU module detection algorithm was loosened slightly to account for very thin slice scans
which have increased noise.

354

Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/268
https://github.com/jrkerns/pylinac/issues/204
https://github.com/jrkerns/pylinac/issues/280
https://github.com/jrkerns/pylinac/issues/275
https://github.com/jrkerns/pylinac/issues/274
https://github.com/jrkerns/pylinac/issues/273

pylinac Documentation, Release 3.8.2

5.20.22 v 2.2.8

Gen

eral

Although the following changes should really mean a 2.3 release, I consider them small enough that I will keep it a

main

Bug

tenance release.

An invert parameter was added to the analyze method of the FlatSym module so the user can override the
automatic inversion.

An invert parameter was added to the analyze method of the Starshot module so the user can override the
automatic inversion.

Fixes

#272 An ‘invert’ parameter was added to the ‘analyze’ function of the starshot module. This allows the user to
force invert the image if pylinac’s auto-inversion algorithm is incorrect.

#264/265 The ‘results’ method for the flatsym module would err out when images with O flatness were used.
#191 The flatsym module was not loading non-DICOM images properly, causing processing failures.

#202 The rotation determination of the QC-3 phantom was often incorrect. This has temporarily been fixed by
hardcoding the angle to 45 degrees. This is a correct assumption if the phantom is being used according to the
instructions.

#263 The FlatSym module was sometimes incorrectly inverting images. This was fixed using a better histogram
methodology.

#266 The deviation of a VMAT ROI was not properly detecting failing segments if the value was negative.
#267 The overall_passed property of the CTP515 module contained an error that would cause an error.

#271 The line pair/mm values for the CT/CBCT module was inadvertently doubled. IL.e. the lines/mm was
given, not line pairs.

5.20.23 v 2.2.7

Winston-Lutz

Bug

A small change was made to the Winston-Lutz BB finding algorithm to be more robust and use less custom
code. The output from WL analyses should be within 0.1mm of previous values.

A section was added to the documentation to describe how images are classified and the analysis of output from
the .results() method.

Fixes

#187 Scipy’s imresize function has been deprecated. Functionality was converted to use skim-
age.transform.resize().

#185 Winston-Lutz PDF generation had an artifact causing catastrophic failure.

#183 The Bakai fomula of the gamma calculation had an operational inconsistency such that dose-to-agreement
other than 1% would give incorrect values of the gamma value.

5.20

. Changelog 355

https://github.com/jrkerns/pylinac/issues/272
https://github.com/jrkerns/pylinac/issues/264
https://github.com/jrkerns/pylinac/issues/191
https://github.com/jrkerns/pylinac/issues/202
https://github.com/jrkerns/pylinac/issues/263
https://github.com/jrkerns/pylinac/issues/266
https://github.com/jrkerns/pylinac/issues/267
https://github.com/jrkerns/pylinac/pull/271
https://github.com/jrkerns/pylinac/issues/187
https://github.com/jrkerns/pylinac/issues/185
https://github.com/jrkerns/pylinac/issues/183

pylinac Documentation, Release 3.8.2

 #190 The Catphan module had an inconsistency in the rMTF/spatial resolution determination. Some line pair
regions would be detected for some phantoms and not for others. This was caused by the different CatPhan
models having slighly different rotations of the CTP528 module. Pylinac now has model-specific boundaries.

¢ #192 The FlatSym plot would conflate the vertical and horizontal lines shown on the analyzed image. Analysis
is unaffected, only the depiction of position.

* #194 The Leeds low contrast ROI color on the analyzed image was not consistent with the contrast plots. ROI
color is now based on the pass/fail of the contrast constant, not the contrast.

* #196 Winston-Lutz images with a dense BB and low photon energy could cause BB detection to fail. A better
BB-finding algorithm has been implemented.

 #197 EPID RMS deviation would return O for the .results() method always. This now calculates correctly.

5.20.24 V 2.2.6
Bug Fixes

 #157 This behavior is revered to pre-2.2.2 behavior to match the DFV and other software.

* #167 Originally, the fix for this was to raise an error and point to a workaround. At the time the fix was to add a paramete
Behavior was able to be changed internally to handle this case without an API change.

5.20.25 V 2.2.5
General

The watcher function has had several issues. It has been disabled and will be removed in v2.3.

Bug Fixes
e #173 When forcing inversion of picket fence, the inversion came after the orientation determination, causing
orientation to be wrong when inversion was needed.
e #171 The load_log function was not working correctly when passing a directory or ZIP archive.
 #172 Calling publish_pdf from log_analyzer without passing a filename would fail.

e #169 VMAT Dynalogs were calculating fluence incorrectly for CCW plans due to the gantry angle replacing the
dose.

 #160 While addressing #160 initially, Trajectory logs were unknowningly affected. Behavior has been reverted
to pre-2.2.2 behavior and documentation changed.

5.20.26 V 2.2.4
Bug Fixes
» #165 Machine log plots and PDFs showing the Leaf RMS were shown in cm, not in mm, as the axis title

indicated.

 #167 Picket fence images where the pickets are too close to the edge perpendicular to the pickets will fail. This
adds an explicit error and mentions a workaround. The next major version will include a padding parameter to
apply this workaround.

356 Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/190
https://github.com/jrkerns/pylinac/issues/192
https://github.com/jrkerns/pylinac/issues/194
https://github.com/jrkerns/pylinac/issues/196
https://github.com/jrkerns/pylinac/issues/197
https://github.com/jrkerns/pylinac/issues/157
https://github.com/jrkerns/pylinac/issues/167
https://github.com/jrkerns/pylinac/issues/173
https://github.com/jrkerns/pylinac/issues/171
https://github.com/jrkerns/pylinac/issues/172
https://github.com/jrkerns/pylinac/issues/169
https://github.com/jrkerns/pylinac/issues/160
https://github.com/jrkerns/pylinac/issues/165
https://github.com/jrkerns/pylinac/issues/167

pylinac Documentation, Release 3.8.2

 #168 Picket fence analyses now crop 2 pixels from every edge. This will allow Elekta images to be analyzed
since they inexplicably have a column of dead pixels in EPID images. Should not affect Varian images.

5.20.27 V 2.2.3
Bug Fixes

* #158 Catphan roll determination algorithm has slightly widened the air bubble-finding criterion.

5.20.28 V 2.2.2
Bug Fixes
* #157 Dynalog MLC leaf error was calculated incorrectly. Expected positions were off by a row. Error results

should be lower on average.

 #160 Dynalog MLC leaf internal pair mapping (1-61 vs 1-120) was different than documentation. Image calcu-
lations should not change.

» #162 The LeedsTOR angle_offset in the .analyze() method was not being followed by the high-contrast bubbles.

e #144 The LeedsTOR angle determination is much more robust. Previously, only certain orientations of the
phantom would correctly identify.

5.20.29 V 2.2.1
Bug Fixes

 #153 Log analyser PDF publishing fix.

* #155 VMAT PDF report had tolerance listed incorrectly (absolute vs percentage) causing most tolerances to
appear as zero due to rounding.

5.20.30 V 2.2.0

General

 #131 Typing has been added to almost every function and class in pylinac.
* F-strings have been incorporated. This bumps the minimum version for Python to 3.6.

* The publish_pdf method of every module has had its signature changed. Before, not all the signatures
matched and only included a few parameters like author and unit name. This has been changed to filename:
str, notes: str, list of str, open_file: bool, metadata: dict. Filename and
open file are straightforward. notes is a string or list of strings that are placed at the bottom of the report (e.g.
‘April monthly redo’). Metadata is a dictionary that will print both the key and value at the top of each page of
the report (e.g. physicist and date of measurement)

¢ The TG-51 module has been placed under a new module: Calibration (TG-51/TRS-398). This is because:
¢ A TRS-398 calibration module has been created 7RS-398.
* The default colormap for arrays is now Viridis, the matplotlib default.

* A contributer’s guide has been added: contributer_guide.

5.20. Changelog 357

https://github.com/jrkerns/pylinac/issues/168
https://github.com/jrkerns/pylinac/issues/158
https://github.com/jrkerns/pylinac/issues/157
https://github.com/jrkerns/pylinac/issues/160
https://github.com/jrkerns/pylinac/issues/162
https://github.com/jrkerns/pylinac/issues/144
https://github.com/jrkerns/pylinac/issues/153
https://github.com/jrkerns/pylinac/issues/155
https://github.com/jrkerns/pylinac/issues/131

pylinac Documentation, Release 3.8.2

 #141 The Pylinac logo has been included in the package so that PDFs can be generated without needing www

access.

* A new dependency has been added: argue which handles input parameters.

Flatness & Symmetry

» #130 The flatsym module has been completely rewritten. Documentation has also been updated and should be

consulted given the number of changes: flatsym_module.

VMAT

The overall simplicity of use has been increased by automating & removing several parameters.

#128 The VMAT class has been split into two classes: DRGS and DRMLC. Although there are now two classes
instead of one, the overall simplicity has been increased, such as the following:

The test parameter in analyze () is no longer required and has been removed.

The type is no longer required in . from_demo_images ().

The demo method matches the other modules: . run_demo ()

All naming conventions have been deprecated.

The x_of fset parameter has been removed. The x-position is now based on the FWHM of the DMLC field
itself. This means the x-position is dynamic and automatic.

The delivery_types parameter has been removed. The delivery types of the images are now automatically
determined.

The methods for plotting and saving subimages (each image & the profiles) has been converted to a private
method (_plot_subimage (), ...). There is little need for a public method to plot individually.

TG-51/Calibration

#127 A TRS-398 module has been added. There are two main classes: TRS398Photon and
TRS398Electron.

#129 The TG-51 module has been refactored toadda TG51ElectronLegacy and TG51ElectronModern
calibration class. The Legacy class uses the classic TG-51 values that require a kecal value and a Pgradient
measurement. The Modern class uses the equations from Muir & Rogers 2014 to calculate kQ that updates
and incorporates the Pgradient and kecal values. While not strictly TG-51, these values are very likely to be
incorporated into the next TG-51 addendum as the kQ values for photons already have.

Certain parameters have been refactored: volt_high and volt_low have been refactored to
voltage_reference and voltage_reduced, m_raw, m_low, and m_opp have been refactored to
m_reference, m_reduced, and m_opposite. These parameters are also the same for the TRS-398
classes (see #127).

The kg function has been separated into three functions: kg_photon_pddl0x, kg_photon_tpr2010,
and kg_electron.

A PDD(20,10) to TPR(20,10) converter function has been added: tpr2010_from_pdd2010.

Pressure and temperature conversion helper functions have been added: mmHg2kPa, mbar2kPa, fahren-
heit2celsius. This can be used in either TG-51 or TRS-398 to get TPR without actually needing to measure
it.

358

Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/141
https://pypi.org/project/argue/
https://github.com/jrkerns/pylinac/issues/130
https://github.com/jrkerns/pylinac/issues/128
https://github.com/jrkerns/pylinac/issues/127
https://github.com/jrkerns/pylinac/issues/129

pylinac Documentation, Release 3.8.2

¢ Defaults were removed from most functions to avoid possible miscalibration/miscalculation.

* Most parameters of both TG-51 and TRS-398 were changed to be keyword only. This will prevent accidental
miscalculations from simple positional argument mismatches.

Bug Fixes

* #138/#139: Too many arguments when plotting the leaf error subplot for picketfence.

e #133: Trajectory log HDMLC status was reversed. This only affected fluence calculations using the
equal_aspect argument.

* #134: Trajectory log fluence array values were not in absolute MU.

5.20.31 V 2.1.0

General

 After reflection, the package seems to have bloated in some respects. Certain behaviors are only helpful in very
few circumstances and are hard to maintain w/ proper testing. They are described below or in their respective
sections.

¢ The command line commands have been deprecated. All commands were simply shortcuts that are just as easy
to place in a 1-2 line Python script. There was no good use case for it in the context of how typical physicists
work.

* The interactive plotting using MPLD3 has been deprecated. Matplotlib figures and PDF reports should be
sufficient. This was a testing nightmare and no use cases have been presented.

* The transition of the method return_results () to results () is complete. This was baked-in from
the very beginning of the package. It is expected that results would return something, nor is there any other
corresponding method prefixed with return_.

* Pip is now the recommended way to install pylinac. Packaging for conda was somewhat cumbersome. Pylinac
itself is just Python and was always installable via pip; it is the dependencies that are complicated. The wheels
format seems to be changing that.

* Some dependency minimum versions have been bumped.

CatPhan

* The module was refactored to easily alter existing and add new catphan models.

* The CatPhan HU module classifier has been deprecated. Its accuracy was not as high as the original brute force
method. Thus, the use_classifier keyword argument is no longer valid.

¢ CatPhan 604 support was added thanks to contributions and datasets from Alan Chamberlain. More datasets are
needed to ensure robust analysis, so please contribute your dataset if it fails analysis.

* The CTP528 slice (High resolution line pairs) behavior was changed to extract the max value from 3 adjacent
slices. This was done because sometimes the line pair slice selected was slightly offset from the optimum slice.
Using the mean would lower MTF values. While using the max slightly increases the determined MTF from
previous versions, the reproducibility was increased across datasets.

5.20. Changelog 359

https://github.com/jrkerns/pylinac/issues/138
https://github.com/jrkerns/pylinac/issues/139
https://github.com/jrkerns/pylinac/issues/133
https://github.com/jrkerns/pylinac/issues/134
https://github.com/alanphys

pylinac Documentation, Release 3.8.2

Winston-Lutz
» Certain properties have been deprecated such as gantry/coll/couch vector to iso. These are dropped in favor of a
cumulative vector.

* A BB shift vector and shift instructions have been added for iterative WL testing. L.e. you can get a BB shift to
move the BB to the determined iso easily.

import pylinac

wl = pylinac.WinstonLutz.from_demo_images ()
print (wl.bb_shift_instructions())

output: RIGHT 0.29mm; DOWN 0.04mm; OUT 0.41mm
shift BB and run it again...

» Images taken at nonzero couch angles are now correctly accounted for in the BB shift.
* Images now do not take into account shifts along the axis of the beam (#116).

* The name of the file will now not automatically be interpreted if it can. This could cause issues for valid DICOM
files that had sufficient metadata. If the image was taken at Gantry of 45 and the file name contained “gantry001”
due to, e.g., TrueBeam’s default naming convention it would override the DICOM data. (#124)

Picket Fence

* Files can now allow for interpretation by the file name, similar to the WL module. This is helpful for Elekta
linacs that may be doing this test (#126).

Core Modules

e is_dicomand is_dicom_image were moved from the utilites module to the i o module.

e field_edges () had the parameter interpolation added so that field edges could be computed more
accurately (#123)

* A new class was created called LinacDicomImage. This is a subclass of DicomImage and currently adds
smart gantry/coll/couch angle interpretation but may be extended further in the future.

5.20.32 V 2.0.0

General

* Version 2.0 is here! It may or may not be a real major version update worthy of ‘2.0°, but ‘1.10* just didn’t
sound as good =)

e A GUI has been added! Most major modules have been added to the GUI. The GUI is a very simple interface
that will load files and publish a PDF/process files. To start the gui run the gui() function like so:

import pylinac
pylinac.gui ()

You may also start the GUI from the command line:

pylinac gui

360 Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/116
https://github.com/jrkerns/pylinac/issues/124
https://github.com/jrkerns/pylinac/issues/126
https://github.com/jrkerns/pylinac/issues/123

pylinac Documentation, Release 3.8.2

The GUI is a result of a few causes. Many physicists don’t know how to code; this should remove that barrier
and allow Pylinac to get even more exposure. I have always felt the web was the future, and it likely is, but
pylinac should be able to run on it’s own, and because a rudimentary GUI is relatively easy, I've finally made
it. The GUI is also free to use and has no hosting costs (unlike assuranceQA.com). Also, due to other ventures,
a new job, and a newborn, I couldn’t devote further time to the assuranceQA site—A native GUI is much easier
albeit much more primitive.

* Some module PDF methods now don’t require filenames. If one is not passed it will default to the name of the
file analyzed. E.g. “abc123.dcm” would become “abc123.pdf”. Modules where multiple images may be passed
(e.g. a CBCT directory) still requires a filename.

* PDF methods now have a boolean parameter to open the file after publishing: open_file.

* A number of dependencies have been bumped. Some were for specific reasons and others were just out of good
practice.

Watcher

* Closes #84 Which would overwrite the resulting zip and PDF of initially unzipped CBCTs performed on the
same day. L.e. multiple CBCTs would result in only 1 zip/PDF. The image timestamp has been edited so that it
will include the hour-minute-second of the CBCT to avoid conflict.

¢ Closes #86 - Which had a discrepancy between the YAML config setting of the file source directories and what
the watcher was looking for.

CatPhan
* Closes #85 Which displayed the nominal CBCT slice width on PDF reports, not the detected width for the
CatPhan504 & CatPhan600.
* Closes #89 which had variables swapped in the CatPhan503 PDF.

* The contrast_threshold parameter has been renamed to cnr_threshold. The meaning and values
are the same, but has been renamed to be consistent with other changes to the roi module.

* Due to various problems with the SVM classifier, the default setting of the classifier has been set to False.
Planar Phantoms

* The Las Vegas phantom has been added to the planar imaging module. It’s use case is very similar to the existing
planar phantoms:

from pylinac import LasVegas

lv = LasVegas ('myfile.dcm'")
lv.analyze ()
lv.publish_pdf ()

e The pylinac.planar._imaging.LeedsTOR.analyze () method has an additional parameter: an-
gle_offset. From analyzing multiple Leeds images, it has become apparent that the low contrast ROIs are not
always perfectly set relative to the phantom. This parameter will allow the user to fine-tune the analysis to
perfectly overlay the low contrast ROIs by adding an additional angle offset to the analysis.

5.20. Changelog 361

https://github.com/jrkerns/pylinac/issues/84
https://github.com/jrkerns/pylinac/issues/86
https://github.com/jrkerns/pylinac/issues/85
https://github.com/jrkerns/pylinac/issues/89

pylinac Documentation, Release 3.8.2

Winston-Lutz

* Closes enhancement #63 Files can now have the axis settings interpreted via the file name. E.g:
“myWL_gantry90_coll0_couch340.dcm”. See Accessing data for further info.

 The x/y/z_offset properties of the WLImages which were deprecated many versions ago have finally been re-
moved.

» The collimator/gantry_sag and associated plot_gantry_sag methods have been deprecated. A similar method
has been implemented that utilizes the RMS deviation. To achieve the “gantry sag” using RMS errors use the
method axis_rms_deviation with parameter value="range’.

TG-51

* The Electron class has been adjusted to reflect the Muir & Rogers 2014 kecal data which allows the user to
calculate kQ from just R50 data.

* The kg function now accepts an r_50 parameter to calculate kQ based on the above data.

Core Modules

* The Image class has been fully depricated and is no longer available. Use the functions available in the :mod-
ule:‘pylinac.core.image‘ module instead. See the version 1.4.0 release notes for further details.

* The remove_edges method has been deprecated and is now an alias for crop. The crop method should be used
instead. Parameters are exactly the same.

5.20.33 V 1.9.0

General Changes

* This release introduces PDF reports for most major modules. All classes with this functionality have been
given a publish_ pdf method. This method takes an output filename and other optional data like the author,
machine/unit, and any custom notes. See e.g. pylinac.starshot.Starshot.publish _pdf () or
pylinac.picketfence.PicketFence.publish pdf().

» The watch/process functions have been tweaked to best work on one unit per run. Multiple units/machines
should have their own config files. A new article task_scheduler describes how to use the process function with
Windows Task Scheduler to regularly pull and analyze files.

CatPhan

* The CatPhan classes, when passed a directory during instantiation, will search through the DICOM files for
Series UIDs and analyze the files of the most numerous UID. E.g. if a folder has 80 DICOM images including
one set of 60 CBCT images and a total of 20 VMAT and picket fence images, it will find the CBCT files via
UID and analyze those, leaving the other images/files alone. This is useful for when all QA images are simply
dumped into one folder.

* Raw, uncompressed CatPhan DICOM files can optionally be compressed to a ZIP file after analysis using the
new zip_after argument in the analyze method.

362 Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/63
http://onlinelibrary.wiley.com/doi/10.1118/1.4893915/abstract

pylinac Documentation, Release 3.8.2

Watcher/Processer

* The watcher/process functions have been reworked to produce PDF files rather than PNG/txt files.

* If upgrading the watch/process function from a previous pylinac version be sure to copy/amend the new default
YAML config file as new keywords have been added and using old YAML files will error out.

» Several new configuration keywords have been changed/added. In the general section, use-classifier has
been deprecated in favor of individual module keywords of the same name. This allows a user to use a classifier
for, say, picket fence images but not for winston lutz images. A unit keyword has been added that specifies
which unit the files should be considered to be from. This unit name is passed to the PDF reports that are
generated. If you have multiple units, make individual YAML configuration files, one for each unit.

e CatPhan, VMAT, and Winston-Lutz can now take raw, unzipped images as well as the usual ZIP archive. ZIP
archives are detected only by keywords as usual. For uncompressed CatPhan images, the analyzer will look for
any CatPhan DICOM file groups via UID (see above CatPhan section), analyze them, and then ZIP the images
until no further sets can be found. For VMAT and Winston-Lutz if the use-classifier setting is true their
respective sections in the YAML configuration then an image classifier is used to group images of the given type
and then analyze them.

5.20.34 v 1.8.0

General Changes

* This release focuses solely on the CBCT/CatPhan module.

 Pylinac now has a logo! Check out the readme on github or landing page on ReadTheDocs.
Watcher/Processer

* The cbct analysis section has been renamed to catphan. Thus, the YAML config file needs to look like the
following:

other sections

catphan: # not chct:

CBCT/CatPhan

* The Python file/module has been renamed to ct from cbct. E.g.:

from pylinac.ct import ...

Most users import directly from pylinac, so this should affect very few people. This was done to generalize the
module to make way for other CT/CBCT phantoms that pylinac may support in the future.

* The CBCT module can now support analysis of the CatPhan 600.

* Automatic detection of the phantom is no longer be performed. Previously, it depended on the manufacturer
to determine the phantom (Varian->504, Elekta->503), but that did not consider users scanning the CatPhan in
their CT scanners, which would give inconsistent results.

5.20. Changelog 363

pylinac Documentation, Release 3.8.2

* Due to the above, separate classes have been made for the CatPhan models. I.e. flow looks like this now:

old way
from pylinac import CBCT

new way

from pylinac import CatPhan504, CatPhan600
cat504 = CatPhan504 ('my/folder")

cat600 = CatPhan600.from_zip('my/zip.zip")

* A classifier has been generated for each CatPhan. Thus, if loading a 503, a 503 classifier will be used, rather
than a general classifier for all phantoms.

e The use_classifier parameter has been moved from the analyze () method to the class instantiation
methods like so:

from pylinac import CatPhanb504
cat504 = CatPhan504 ('my/folder', use_classifier=True)
cat504.analyze () # no classifier argument

e MTF is now more consistently calculated. Previously, it would simply look at the first 6 line pair regions. In
cases of low mA or very noisy images, finding the last few regions would error out or give inconsistent results.
Contrarily, high dose/image quality scans would only give MTF down to ~50% since the resolution was so good.
Now, MTF is searched for region-by-region until it cannot find the correct amount of peaks and valleys, meaning
it is now lost in the noise. This means high-quality scans will find and calculate MTF over more regions and
fewer for low-quality scans. In general, this makes the MTF plot much more consistent and usually always gives
the RMTF down to 0-20%.

Individual modules are now only composed of 1 slice rather than averaging the nearby slices. Previously, for
consistency, a given module (e.g. CTP404) would find the correct slice and then average the pixel values of the
slices on either side of it to reduce noise and give more consistent results. The drawback of this method is that
results that depend on the noise of the image are not accurate, and signal/noise calculations were always higher
than reality if only looking at one slice.

5.20.35 v 1.7.2

» Fixed (#78) - Certain CBCT datasets have irregular background values. Additionally, the dead space in the
square CT dataset outside the field of view can also be very different from the air background. This fix analyzes
the dataset for the air background value and uses that as a baseline value to use as a CatPhan detection threshold.

5.20.36 V 1.7.0

General Changes

* The underlying structure of the watcher script has been changed to use a different framework. This change
allows for analysis of existing files within the directory of interest.

* A new module has been introduced: tg51, handling several common equations and data processing for things
relating to TG-51 absolute dose calibration such as Kq, PDDx, Dref, pion, ptp, etc. It also comes with classes
for doing a full TG-51 calculation for photons and electrons with cylindrical chambers.

364 Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/78

pylinac Documentation, Release 3.8.2

Log

Analyzer

The log analyzer has changed from having a main class of MachineLog, to the two distinct log types:
Dynalogand TrajectoryLog. These classes are used the same way as machinelog, but obviously is meant
for one specific type of log. This allows for cleaner source code as the MachineLog class had large swaths
of if/else clauses for the two log types. But don’t worry! If you’re unsure of the log type or need to han-
dle both types then a helper function has been made: 1oad_log. This function will load a log just like the
MachineLog did and as the new classes. The difference is it will do automatic log type detection, returning
either a Dynalog instance or TrajectoryLog instance. The MachineLogs class remains unchanged.

More specific errors have been introduced; specifically NogALogError, NotADynalogError, and
DynalogMatchError which are self-explanatory and more specific than IOError.

Fixed (#74) which was causing Dynalogs with patient names containing a “V” to be classified as Trajectory
logs.

Fixed (#75) which was skewing gamma pass percent values.

Planar Imaging

Dire

The PipsProQC3 class/phantom has been refactored to correctly reflect its manufacturer to Standard Imaging,
thus the class has been renamed to StandardImagingQC3.

ctory Watching

The watch command line argument now has a sister function, available in a regular Python program:
watch (). With this command you can run the directory watcher programmatically, perfect for continuous
log monitoring.

A new command line argument is available: process. This command is also available in Python as
process () which can be called on a directory either through the command line or programmatically and
will analyze a folder once and then exit, perfect for analyzing a new monthly dataset.

The structure of querying for files has been changed significantly. Instead of triggering on file changes (e.g.
adding a new file to the directory), the watcher now constantly queries for new files at a specified interval. This
means that when started, the watcher will analyze existing files in the folder, not just new ones.

Information given in the email has been modified for logs, which may potentially contain PHI. Instead of the
entire log file name given, only the timestamp is given. Additionally, the logs are no longer attached to the
email.

5.20.37 V 1.6.0

Gen

eral Changes

Changed the default colormap of dicom/grayscale images to be “normal” gray vs the former inverted gray.
Brought up in (#70) .

Added a colormap setting that can be changed. See Changing Colormaps

Added a utility function clear_data_files () to clear demo files and classifier files. This may become
useful for classifier updates. I.e. the classifier for a given algorithm can be cleared and updated as need be,
without the need for a new package release. More information on this will follow as the use of classifiers
becomes normal.

5.20

. Changelog 365

https://github.com/jrkerns/pylinac/issues/74
https://github.com/jrkerns/pylinac/issues/75
https://github.com/jrkerns/pylinac/issues/70

pylinac Documentation, Release 3.8.2

e Added a dependency to the pylinac requirements: scikit-learn. This library will allow for machine learning

advancements to be used with pylinac. I am aware of the increasing number of dependencies; pylinac has
reached a plateau I believe in terms of advancement and I hope that this is the last major dependency to be
added.

Winston-Lutz

* (#69) Added EPID position tracking. Now the EPID location will show up in images and will give an output

value when printing the summary. Relevant methods like cax2epid distance () and epid_sag (), and
plot_epid_sag () have been added. The summary plot has also been changed to include two sag plots: one
for the gantry and one for the EPID.

Certain properties of WL images have been deprecated. x_offset has been replaced by bb_x_offset ()
and respectively for the other axes. Usage of the old properties will raise a deprecation warning and will be
removed in v1.7.

Note: The deprecation warnings may not show up, depending on your python version and/or warning settings.
See the python docs for more info.

CBCT

e Added a Support Vector Machine classifier option for finding the HU slice. The classifier is faster (~30%)

than the brute force method. This option is available as a parameter in the analyze () method as
use_classifier. In the event the classifier does not find any relevant HU slices, it will gracefully fall
back to the brute force method with a runtime warning. Because of the fallback feature, the classifier is now
used first by default. Using the classifier requires a one-time download to the demo folder, which happens
automatically; just make sure you’re connected to the internet.

Picket Fence

* An orientation keyword argument was added to the analyze () method. This defaults to None, which

does an automatic determination (current behavior). In the event that the determined orientation was wrong, this
argument can be utilized.

Watcher Service

* A new option has been added to the general section: use—classifier. This option tells pylinac whether

to use an SVM image classifier to determine the type of image passed. This allows the user not to worry about the
file names; the images can be moved to the monitored folder without regard to naming. The use of the classifier
does not exclude file naming conventions. If the classifier does not give a good prediction, the algorithm will
gracefully fall back to the file name convention.

The following image types currently support automatic detection:

Picket Fence

Starshot
Leeds TOR
PipsPro QC-3

366

Chapter 5. Contributing

http://scikit-learn.org/stable/
https://github.com/jrkerns/pylinac/issues/69
https://docs.python.org/3.5/library/warnings.html#warning-categories

pylinac Documentation, Release 3.8.2

5.20.38 V 1.5.6

* Adds the dtype keyword to DicomImage’s init method.

* (#60) - Fixed an issue with Winston-Lutz isocenters not calculating correctly.

* (#68) - Fixed the order of the Winston-Lutz images when plotted.

* Many thanks to Michel for noting the WL errors and submitting the first external pull request !

* Fixed several small bugs and runtime errors.

5.20.39 V1.5.5

* (#65) - Fixed the FlatSym demo file usage.

5.20.40 V1.5.4

* (#64) - Fixed the Picket Fence offset from CAX value, which previously were all the same value.

5.20.41 V 1.5.1-3

General Changes

* Fixed conda entry points so that the user can use pylinac console scripts.

* Moved demo images outside the package to save space. Files are downloaded when relevant methods are
invoked.

5.20.42 V1.5.0
General Changes

* The pylinac directory watcher service got a nice overhaul. Now, rather than running the watcher script file
directly, you can use it via the console like so:

$ pylinac watch "path/to/dir"

This is accomplished through the use of console scripts in the Python setup file. Once you upgrade to v1.5, this
console command immediately becomes available. See the updated docs on Directory Watching. Previously,
customizing behavior required changing the watcher script directly. Now, a YAML file can be generated that
contains all the analysis configurations. Create and customize your own to change tolerances and even to trigger
emails on analyses.

* You can now anonymize logs via console scripts:

$ pylinac anonymize "path/to/log/dir"

This script is a simple wrapper for the log analyzer’s anonymize function.

* Pylinac is now on anaconda.org — i.e. you can install via conda and forget about dependency & installation
issues. This is the recommended way to install pylinac now. To install, add the proper channel to the conda
configuration settings.

5.20. Changelog 367

https://github.com/jrkerns/pylinac/issues/66
https://github.com/jrkerns/pylinac/issues/68
https://github.com/jrkerns/pylinac/pull/67
https://github.com/jrkerns/pylinac/issues/65
https://github.com/jrkerns/pylinac/issues/64
http://pylinac.readthedocs.org/en/latest/watcher.html
http://pylinac.readthedocs.org/en/stable/log_analyzer.html#pylinac.log_analyzer.anonymize
https://anaconda.org/jrkerns/pylinac

pylinac Documentation, Release 3.8.2

’$ conda config --add channels Jjrkerns

Then, installation and upgrading is as simple as:

’$ conda install pylinac

The advantage of saving the channel is that upgrading or installing in other environments is always as easy as
conda install pylinac.

* Pylinac’s core modules (image, i0, etc) are now available via the root package level.

old way

from pylinac.core import image
new way

from pylinac import image

Starshot

» Relative analysis is no longer allowed. I.e. you can no longer pass images that do not have a DPI or SID. If the
image does not have these values inherently (e.g. jpg), you must pass it explicitly to the Starshot constructor.
No changes are required for EPID images since those tags are in the image file.

e Added a . from_zip () class method. This can contain a single image (to save space) or a set of images that
will be combined.

Log Analyzer

¢ The anonymize function received an optimization that boosted anonymization speed by ~3x for Trajectory logs
and ~2x for Dynalogs. This function is very fast.

* Trajectory log subbeam fluences are now available. This works the same way as for the entire log:

log = Machinelog. from_demo_dynalog()

calculate & view total actual fluence
log.fluence.actual.calc_map ()
log.fluence.actual.plot_map ()

calculate & view the fluence from the first subbeam
log.subbeams[0].fluence.actual.calc_map ()
log.subbeams [0] .fluence.actual.plot_map ()

* The gamma calculation has been refactored to use the image.gamma() method. Because of this, all threshold
parameters have been changed to fractions:

log = MachineLog.from_demo_trajectorylog()

old way

log.fluence.gamma.calc_map (threshold=10) # <— this indicates 10% threshold

new way

log.fluence.gamma.calc_map (threshold=0.1) # <— this also indicates 10% threshold

The gamma threshold parameter requires the value to be between 0 and 1, so any explicit thresholds will raise
an error that should be addressed.

e The .pixel_map attribute of the actual, expected, and gamma fluence structures have been renamed to array
since they are numpy arrays. This attribute is not normally directly accessed so few users should be affected.

368 Chapter 5. Contributing

http://pylinac.readthedocs.org/en/stable/log_analyzer.html#pylinac.log_analyzer.anonymize
http://pylinac.readthedocs.org/en/stable/core_modules.html#pylinac.core.image.BaseImage.gamma

pylinac Documentation, Release 3.8.2

Bug Fixes

* Fixed a bug that would not cause certain imaging machine logs (CBCT setup, kV setups) to be of the “Imaging”
treatment type.

5.20.43 V 1.4.1

e (#56) - Fixes a starshot issue where if the SID wasn’t 100 it was corrected for twice.

e (#57) - CR images sometimes have an RTImageSID tag, but isn’t numeric; this caused SID calculation errors.

5.20.44 V1.4.0

General Changes

* Nearly all instance-based loading methods (e.g. Starshot () .load ('myfile')) have been deprecated.
Essentially, you can no longer do empty constructor calls (PicketFence ()). The only way to load data is
through the existing class-based methods (e.g. Starshot ('myfile'), Starshot.from_url ('http.
.. "), etc). The class-based methods have existed for several versions, and they are now the preferred and only
way as there is no use case for an empty instance.

Since v1.2 most URLs were downloaded and then the local (but temporary) files were loaded. This practice has
now been standardized for all modules. L.e. any from_url () -style call downloads a temporary file and loads
that. Because the downloads are to a temporary directory, then are removed upon exit.

* Loading images using the Image class has been deprecated (but still works) in favor of the new functions in the
same module with the same name. Where previously one would do:

from pylinac.core.image import Image

img = Image.load('my/file.dcm')

One should now do:

from pylinac.core.image import load

img = load('my/file.dcm')

Functionality is exactly the same, but supports a better abstraction (there is no reason for a class for just
behaviors). The same change applies for the other loading methods of the Image class: load_url and
load_multiples. The Image class is still available but will be removed in v1.5.

Picket Fence

e PicketFence can now load a machine log along with the image to use the expected fluence to determine
error. This means if an MLC bank is systematically shifted it is now detectable, unlike when the pickets are
fitted to the MLC peaks. Usage is one extra parameter:

pf = PicketFence ('my/pf.dcm', log='my/pf_log.bin')

5.20. Changelog 369

https://github.com/jrkerns/pylinac/issues/56
https://github.com/jrkerns/pylinac/issues/57

pylinac Documentation, Release 3.8.2

Winston-Lutz

e A from_url () method has been added.

* Upon loading, all files are searched within the directory, not just the root level. This allows for nested files to be
included.

CBCT

e The from_zip_file () class constructor method has been renamed to from_zip () to be consistent with
the rest of pylinac’s similar constructors.

Log Analyzer

* Anew treatment_type has been added for CBCT and kV logs: Imaging.

¢ A new function has been added to the module: anonymize (). This function is similar to the . anonymize ()
method, but doesn’t require you to load the logs manually. The function is also threaded so it’s very fast for
mass anonymization:

from pylinac.log _analyzer import anonymize

anonymize ('my/log/folder")
anonymize ('mylog.bin')

Starshot

* The starshot minimization algorithm has been changed from differential evolution to the more predictable min-
imize. Previously, results would often be predictable, but would occasionally give really good or really bad
results even though no input was changed. This was due to the algorithm; now that a stable algorithm is being
used, results are reproducible.

VMAT

* The VMAT loading scheme got a few changes. The Naming Convention is still the same, but images are always
loaded upon instantiation (see General Changes). Also, if the naming convention isn’t used, image delivery
types can be passed in during construction; e.g.:

VMAT (images=(imgl, img2), delivery_types=['open', 'dmlc']

* Loading from a URL has been renamed from from_urls () to from_url () and assumes it points to a ZIP
archive with the images inside.

Bug Fixes

* (#47) - Fixes the trajectory log number of beam holds calculation. Thanks, Anthony.

* (#50) - Fixes RMS calculations for “imaging” trajectory logs. Previously, the RMS calculation would return
nan, but now returns 0.

e (#51) - Results of the starshot wobble were sometimes extremely high or low. This has been fixed by using a
more stable minimization function.

370 Chapter 5. Contributing

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize
http://pylinac.readthedocs.org/en/latest/vmat_docs.html#naming-convention
https://github.com/jrkerns/pylinac/issues/47
https://github.com/jrkerns/pylinac/issues/50
https://github.com/jrkerns/pylinac/issues/51

pylinac Documentation, Release 3.8.2

e (#52) - The starshot wobble diameter was incorrect. A recent change of the point-to-line algorithm from 2D to
3D caused this issue and has been fixed.

* (#53) - The Winston-Lutz BB-finding algorithm would sometimes pick up noise, mis-locating the BB. A size
criteria has been added to avoid detecting specks of noise.

e (#54) - Imaging Trajectory logs, besides having no RMS calculation, was producing warnings when calculating
the fluence. Since there is no fluence for kV imaging logs, the fluence now simply returns an 0’d fluence array.

e (#55) - Dead pixels outside the field were throwing off the thresholding algorithm and not detecting the field
and/or BB.

5.20.45 V 1.3.1

* (#46) - Fixes CBCT analysis where there is a ring artifact outside the phantom. Incidentally, analysis is sped up
by ~10%.

5.20.46 V 1.3.0

General Changes

* A new dependency has been added: scikit-image. Given that pylinac is largely an image processing library, this
is actually overdue. Several extremely helpful functions exist that are made use of in both the new modules
and will slowly be incorporated into the old modules as needed. The package is easily installed via pip (pip
install scikit-image)orviaconda(conda install scikit-image) if usingthe Anaconda dis-
tribution. Finally, if simply upgrading pylinac scikit-image will automatically install via pip. For the sake of
installation speed I’d recommend conda.

* ROI sampling for CBCT and Leeds classes have been sped up ~10x, making analysis moderately to much faster.

* All user-interface dialog functions/methods have been deprecated. E.g. PicketFence.from_UI () is no
longer a valid method. To retain similar functionality use Tk to open your own dialog box and then pass in the
file name. Specifically, this applies to the VMAT, Starshot, PicketFence, MachineLog(s), FlatSym, and CBCT
classes. The original goal of pylinac was to be used for a standalone desktop application. The assuranceqa.com
web interface is the successor to that idea and does not need those UI methods.

Planar Imaging

* A new planar imaging class has been added: PipsProQC3. This class analyzes the PipsPro QC-3 MV imaging
phantom. The class locates and analyzes low and high contrast ROIs.

* The Leeds phantom utilizes the scikit-image library to do a canny edge search to find the phantom. This will
bring more stability for this class.

5.20.47 V1.2.2

* (#45) Fixes various crashes of Leeds analysis.

5.20.48 V 1.2.1

* (#44) Fixed a stale wheel build causing pip install to install v1.1.

5.20. Changelog 371

https://github.com/jrkerns/pylinac/issues/52
https://github.com/jrkerns/pylinac/issues/53
https://github.com/jrkerns/pylinac/issues/54
https://github.com/jrkerns/pylinac/issues/55
https://github.com/jrkerns/pylinac/issues/46
http://scikit-image.org/
http://pylinac.readthedocs.org/en/latest/planar_imaging.html#pipspro-phantom
https://github.com/jrkerns/pylinac/issues/45
https://github.com/jrkerns/pylinac/issues/44

pylinac Documentation, Release 3.8.2

5.20.49 V1.2.0

General Changes

CatPhan 503 (Elekta) analysis is now supported.

A new planar imaging module has been added for 2D phantom analysis; currently the Leeds TOR phantom is
available.

The requests package is no longer needed for downloading URLs; the urllib stdlib module is now used
instead.

Requirements were fixed in the docs and setup.py; a numpy function was being used that was introduced in v1.9
even though v1.8 was stated as the minimum; the new requirement is v1.9.

Demonstration methods for the main classes have been fully converted to static methods. This means, for
example, the following are equivalent: CBCT () . run_demo () and CBCT.run_demo ().

Core Modules

A tutorial on the use of the core modules is now available.
A new mask core module was created for binary array operations.
(#42) The Image classes now have a gamma method available.

The Image classes’ median_filter () method has been renamed to £ilter (), which allows for different
types of filters to be passed in.

The Image class can now load directly from a URL: 1oad_url ().

CBCT

 CatPhan 503 (Elekta) is now supported. Usage is exactly the same except for the low-contrast module, which is

not present in the 503.

* The low contrast measurements now use two background bubbles on either side of each contrast ROI. The

default contrast threshold has been bumped to 15, which is still arbitrary but fits most eyeball values.

Starshot

* (#43) Keyword arguments can be passed to the init and class methods regarding the image info. For example, if

a .tif file is loaded but the DPI is not in the image header it can be passed in like so:

star = Starshot ('mystar.tif', dpi=100, sid=1000)

Planar Imaging

2D analysis of the Leeds TOR phantom is available. Tests low and high contrast. A new Planar Imaging doc

page has been created.

Winston-Lutz

* A save_summary () method has been added for saving the plot to file.

372

Chapter 5. Contributing

https://github.com/jrkerns/pylinac/issues/42
https://github.com/jrkerns/pylinac/issues/43

pylinac Documentation, Release 3.8.2

5.20.50 V 1.1.1

* Winston-Lutz demo images were not included in the pypi package.

5.20.51 V1.1.0

General Changes

* This release debuts the new Winston-Lutz module, which easily loads any number of EPID images, finds the
field CAX and the BB, and can plot various metrics.

Log Analyzer

* Logs can now be anonymized using the . anonymize () method for both MachineLog and MachineLogs.
e The .to_csv () methods for MachineLog and Machinel.ogs returns a list of the newly created files.

* MachineLogs can now load from a zip archive using . from_zip ().

5.20.52 V 1.0.3

* Fixes #39. MachineLog fluence was inverted in the left-right direction.

* Fixes #40. MachineLog fluence calculations from dynalogs were dependent on the load order (A-file vs. B-file).

5.20.53 V 1.0.2

* Fixes #38. MachineLog fluence calculations would crash if there was no beam-on snapshots (e.g. kV images).

5.20.54 V 1.0.1

* Fixes #37. Reading in a trajectory log txt file with a blank line caused a crash.

5.20.55 vV 1.0.0

General Changes

* This release debuts the new interactive plotting for certain figures. Quickly, matplotlib line/bar plots (althouth
not yet images/arrays) can be plotted and saved in HTML using the MPLD3 library. This is less of interest to
users doing interactive work, but this adds the ability to embed HTML plots in web pages.

» Several numpy array indexing calls were converted to ints from floats to avoid the new 1.9 numpy type-casting
warnings. This also speeds up indexing calls slightly.

Picket Fence

* The analyzed image now has the option of showing a leaf error subplot beside the image. The image is aligned
to the image such that the leaves align with the image.

5.20. Changelog 373

pylinac Documentation, Release 3.8.2

Starshot

* Plotting the analyzed starshot image now shows both the zoomed-out image and a second, zoomed-in view of
the wobble.

 Each subplot can be plotted and saved individually.

VMAT

* Plotting the analyzed image now shows the open and dmlc images and the segment outlines as well as a profile
comparison between the two images. Each subplot can also be plotted and saved individually.

* MLCS is no longer a test option; DRMLC should be used instead.

5.20.56 V 0.9.1

* Fixed a bug with the log analyzer treatment type property.

5.20.57 V 0.9.0

General Changes

* This release has a few new features for the CBCT class, but is mostly an internal improvement. If you only use
the main classes (CBCT, PicketFence, Starshot, etc), there should be no changes needed.

CBCT

* The CBCT analysis now examines low contrast ROIs and slice thickness.

e CBCT components have been renamed. E.g. the HU linearity attr has been renamed hu from HU.

Starshot

* Fixes #32 which was causing FWHM peaks on starshots to sometimes be erroneous for uint8/uint16 images.

PicketFence

* Adds #31, a method for loading multiple images into PicketFence.

Log Analyzer

* Fixes a bug which sometimes caused the parsing of the associated .txt log file for trajectory logs to crash.

5.20.58 V 0.8.2

 Fixed a bug with the picket fence overlay for left-right picket patterns.

* Plots for starshot, vmat, and picketfence now have a larger DPI, which should mean some more detail for saved
images.

374 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

5.20.59 V 0.8.1

* Fixed an import bug

5.20.60 V 0.8.0

General Changes

¢ An upgrade for the robustness of the package. A LOT of test images were added for the Starshot, CBCT,
PicketFence, and VMAT modules and numerous bugs were caught and fixed in the process.

* The debut of the “directory watcher”. Run this script to tell pylinac to watch a directory; if a file with certain

keywords is placed in the directory, pylinac will analyze the image and output the analyzed image and text file
of results in the same directory.

e A generic troubleshooting section has been added to the documentation, and several modules have specific
troubleshooting sections to help identify common errors and how to fix them.

VMAT

e Addeda from_zip () and load_zip () method to load a set of images that are in a zip file.

* Added an x_offset parameter to analyze () to make shifting segments easier.

PicketFence

* Fixed #30, which wasn’t catching errors on one side of the pickets, due to a signed error that should’ve been
absolute.

* Two new parameters have been added to analyze (): num_pickets and sag_adjustment, which are
somewhat self-explanatory. Consult the docs for more info.

Starshot

* Fixed #29, which was causing analysis to fail for images with a pin prick.

CBCT

* Fixed #28, which was applying the phantom roll adjustment the wrong direction.

5.20.61 V 0.7.1
General Changes

e Added . from_url () class method and .load_url () methods to most modules.

5.20. Changelog 375

pylinac Documentation, Release 3.8.2

PicketFence

» Fixed #23, which was not properly detecting pickets for picket patterns that covered less than half the image.

* Fixed #24, which was failing analysis from small but very large noise. A small median filter is now applied to
images upon loading.

5.20.62 V 0.7.0

General Changes

» The scipy dependency has been bumped to v0.15 to accommodate the new differential evolution function using
in the Starshot module.

CBCT

* Whereas v0.6 attempted to fix an issue where if the phantom was not centered in the scan it would error out by
adding a z-offset, v0.7 is a move away from this idea. If the offset given was not correct then analysis would
error disgracefully. It is the point of automation to automatically detect things like where the phantom is in the
dataset. Thus, v0.7 is a move towards this goal. Briefly, upon loading all the images are scanned and the HU
linearity slice is searched for. Of the detected slices, the median value is taken. Other slices are known relative
to this position.

* As per above, the z-offset idea is no longer used or allowed.
* Plots are now all shown in grayscale.

« If the phantom was not completely scanned (at least the 4 modules of analysis) analysis will now error out more
gracefully.

5.20.63 V 0.6.0

General Changes

* Pylinac now has a wheel variation. Installation should thus be quicker for users with Python 3.4.

* Most main module classes now have a save method to save the image that is plotted by the plot method.

Class-based Constructors

* This release presents a normalized and new way of loading and initializing classes for the PicketFence, Starshot,
VMAT and CBCT classes. Those classes all now accept the image path (folder path for CBCT) in the initializa-
tion method. Loading other types of data should be delegated to class-based constructors (e.g. to load a zip file
into the CBCT class, one would use cbct = CBCT.from_zip_file('zfiles.zip')). This allows
the user to both initialize and load the images/data in one step. Also prevents user from using methods before
initialization (i.e. safer). See ReadTheDocs page for more info.

Dependencies

* Because the VMAT module was reworked and is now based on Varian specs, the pandas package will no longer
be required. FutureWarnings have been removed.

376 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

CBCT
* Bug #18 is fixed. This bug did not account for slice thickness when determining the slice positions of the
relevant slices.

* Bug #19 is fixed. This bug allowed the loading of images that did not belong to the same study. An error is now
raised if such behavior is observed.

* Demo files are now read from the zipfile, rather than being extracted and then potentially cleaning up afterward.
Behavior is now quicker and cleaner.

¢ Individual plots of certain module/slices can now be done. Additionally, the MTF can be plotted.

* The user can now adjust the relative position of the slice locations in the event the phantom is not set up to
calibration conditions.

Log Analyzer

» Keys in the txt attr dict weren’t stripped and could have trailing spaces. Keys are now stripped.

VMAT

 Ability to offset the segments has been added. Complete overhaul to conform to new Varian RapidArc QA
specs. This includes the following:
* Rather than individual samples, 4 or 7 segments are created, 5x100mm each.

* Deviation is now calculated for each segment, based on the average segment value.

e The DRMLC test has changed name to MLCS. E.g. passing a test should be: myvmat .analyze ('mlcs'),
not myvmat .analyze ('drmlc'); the latter will still work but raises a future warning.

Starshot

* Fixed a bug where an image that did not have pixels/mm information would error out.

* Added a tolerance parameter to the analyze method.

5.20.64 V 0.5.1

Log Analyzer

* Axis limits are now tightened to the data when plotting log_analyzer.Axis data.
e Gamma map plot luminescence is now normalized to 1 and a colorbar was added.
* Bug #14 fixed, where Tlogs v3 were not loading couch information properly.

* Trajectory log .txt files now also load along with the .bin file if one is around.

Starshot

¢ Multiple images can now be superimposed to form one image for analysis.

5.20. Changelog 377

pylinac Documentation, Release 3.8.2

VMAT

* load_demo_image () parameter changed from test_type to type

5.20.65 V 0.5.0

* A new flatness & symmetry module allows for film and EPID image analysis.
* The 1og_analyzer module now supports writing trajectory logs to CSV.

* A FutureWarning that pandas will be a dependency in later versions if it’s not installed.

5.20.66 V 0.4.1

* Batch processing of logs added via a new class.

* ~4x speedup of fluence calculations.

5.20.67 V 0.4.0

* A Varian MLC picket fence analysis module was added; this will analyze EPID PF images of any size and either
orientation.

5.20.68 V 0.3.0

¢ Log Analyzer module added; this module reads Dynalogs and Trajectory logs from Varian linear accelerators.

Starshot

* The profile circle now aligns with the lines found.
* Recursive option added to analyze for recursive searching of a reasonable wobble.

* Image now has a cleaner interface and properties

5.20.69 V 0.2.1

* Demo files were not included when installed from pip

5.20.70 V 0.2.0

 Python 2.7 support dropped. Python 3 has a number of features that Python 2 does not, and because this project
is just getting started, I didn’t want to support Python 2, and then eventually drop it as Python 3 becomes more
and more mainstream.

* Internal overhaul. Modules are now in the root folder. A core module with specialized submodules was created
with a number of various tools.

* Demo files were assimilated into one directory with respective subdirectories.
* VMAT module can now handle HDMLC images.

e CBCT module was restructured and is much more reliable now.

378 Chapter 5. Contributing

pylinac Documentation, Release 3.8.2

* method names normalized, specifically the return_results method, which had different names in different mod-
ules.

* Lots of tests added; coverage increased dramatically.

5.20.71 V0.1.3

Overall

A module for analyzing CBCT DICOM acquisitions of a CatPhan 504 (Varian) has been added. The starshot demo
files have been compressed to zip files to save space. A value decorator was added for certain functions to enforce,
e.g., ranges of values that are acceptable. The “Files” directory was moved outside the source directory. -Starshot now
reports the diameter instead of radius

5.20.72 V 0.1.2

A PyPI setup.py bug was not properly installing pylinac nor including demo files. Both of these have been fixed.

5.20.73 V 0.1.1

Several small bugs were fixed and small optimizations made. A few methods were refactored for similarity between
modules.

5.20.74 V 0.1.0

This is the initial release of Pylinac. It includes two modules for doing TG-142-related tasks: Starshot & VMAT QA

Versioning mostly follows standard semantic revisioning. However, each new module will result in a bump in minor
release, while bug fixes will bump patch number.

5.20. Changelog 379

pylinac Documentation, Release 3.8.2

380 Chapter 5. Contributing

CHAPTER O

Indices and tables

* genindex
* modindex

e search

381

pylinac Documentation, Release 3.8.2

382 Chapter 6. Indices and tables

Python Module Index

P

pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.

core.decorators, 312
core.geometry, 294
core.image, 284
core.io, 306
core.mask, 310
core.profile, 297
core.roi, 308
core.utilities, 310
ct, 74
log_analyzer, 123
picketfence, 155
planar_imaging, 205
starshot, 45
vmat, 58
winston_lutz, 187

383

pylinac Documentation, Release 3.8.2

384 Python Module Index

Index

A

A (pylinac.log_analyzer MLCBank attribute), 142
a_logfile (pylinac.log_analyzer.Dynalog attribute),
139
abs_mean_deviation
attribute), 71
abs_median_error (pylinac.picketfence.PicketFence
attribute), 181
absolute_median_error_mm
(pylinac.picketfence. PFResult
185
ACRCT (class in pylinac.acr), 106
ACRCTResult (class in pylinac.acr), 109
ACRMRILarge (class in pylinac.acr), 110
ACRMRIResult (class in pylinac.acr), 113
action_tolerance_mm
(pylinac.picketfence. PFResult
185
ACTUAL (pylinac.log_analyzer.Fluence attribute), 143
actual (pylinac.log_analyzer.FluenceStruct attribute),
151
ActualFluence (class in pylinac.log_analyzer), 152
add_guards_to_axes () (pylinac.picketfence.Picket
method), 186

(pylinac.vmat. VMATResult

attribute),

attribute),

analyze () (pylinac.ct.CatPhan600 method), 90

analyze () (pylinac.ct.CatPhan604 method), 93

analyze () (pylinac.field_analysis.FieldAnalysis
method), 277

analyze () (pylinac.picketfence.PicketFence method),
182

analyze () (pylinac.planar_imaging.DoselabMC2kV
method), 244

analyze () (pylinac.planar_imaging.DoselabMC2MV
method), 241

analyze () (pylinac.planar_imaging.IBAPrimusA
method), 257

analyze () (pylinac.planar_imaging. IMTLRad
method), 261

analyze () (pylinac.planar_imaging.LasVegas
method), 239

analyze () (pylinac.planar_imaging.LeedsTOR
method), 229

analyze () (pylinac.planar_imaging.LeedsTORBlue
method), 231

analyze () (pylinac.planar_imaging. PTWEPIDQC
method), 254

analyze () (pylinac.planar_imaging. SNCFSQA
method), 262

add_layer () (pylinac.core.image_generator.simulators.£SSTOO0 Y (pylinac.planar_imaging.SNCkV method),

method), 325

251

add_layer () (pylinac.core.image_generator.simulators.£S12b8 gy (Pylinac.planar_imaging. SNCMV method),

method), 325

add_layer () (pylinac.core.image_generator.simulators.£S50ONRGs

method), 325
add_leaf axis ()
method), 145

(pylinac.log_analyzer MLC

adjust_for_sag () (pylinac.picketfence. PFDicomImagé‘nalY ze () (pylinac.planar_imaging.StandardImagingQC3

method), 186
AGILITY (pylinac.picketfence. MLC attribute), 185
analyze () (pylinac.acrACRCT method), 107

analyze () (pylinac.acrACRMRILarge method), 111
analyze () (pylinac.ct.CatPhan503 method), 87
analyze () (pylinac.ct.CatPhan504 method), 83

246
£) (pylinac.planar_imaging. SNCMV12510
method), 249

analyze () (pylinac.planar_imaging.StandardlmagingFC2

method), 259

method), 234

analyze () (pylinac.planar_imaging.StandardlmagingQCkV

method), 236
analyze () (pylinac.quart.QuartDVT method), 116

analyze () (pylinac.starshot.Starshot method), 55
analyze () (pylinac.vmat. DRGS method), 67
analyze () (pylinac.vmat. DRMLC method), 70

385

pylinac Documentation, Release 3.8.2

analyze () (pylinac.vmat.VMATBase method), 72

analyze () (pylinac.winston_lutz. WinstonLutz
method), 200

analyze () (pylinac.winston_lutz. WinstonLutz2D
method), 204

anonymize () (in module pylinac.log_analyzer), 138

anonymize () (pylinac.log_analyzer.MachineLogs
method), 142

append () (pylinac.log_analyzerMachineLogs
method), 141

avg_abs_r_deviation (pylinac.vmat. DRMLC at-
tribute), 70

avg_abs_r_deviation
attribute), 72

avg_gamma (pylinac.log_analyzer.GammaFluence at-
tribute), 153

avg_gamma () (pylinac.log_analyzer.MachineLogs
method), 141

avg_gamma_pct () (pylinac.log_analyzer.MachineLogs
method), 142

(pylinac.vmat. VMATBase

apply () (pylinac.core.image_generator.layers.ConstantLaery_line_distance_mm (pylinac.ct. CTP404Result

method), 325

attribute), 97

apply () (pylinac.core.image_generator.layers.FilteredFiektlgyer _deviation (pylinac.vmat. DRGS attribute), 69

method), 323

avg_r_deviation (pylinac.vmat. DRMLC attribute),

apply () (pylinac.core.image_generator.layers.FilterFreeConeLayer70

method), 322

avg_r_deviation (pylinac.vmat.VMATBase at-

apply () (pylinac.core.image_generator.layers.FilterFreeFieldLayertribute), 72

method), 324

Axis (class in pylinac.log_analyzer), 143

apply () (pylinac.core.image_generator.layers.GaussianFatenlsiyéreta (pylinac.log_analyzer.Dynalog attribute),

method), 324

apply () (pylinac.core.image_generator.layers.PerfectBBLayérs_data

method), 324

138
(pylinac.log_analyzer. TrajectoryLog
attribute), 139

apply () (pylinac.core.image_generator.layers. PerfectConekdysr rms_deviation ()

method), 322

apply () (pylinac.core.image_generator.layers.PerfectFieldLayer

method), 323

(pylinac.winston_lutz. WinstonLutz ~ method),

201

apply () (pylinac.core.image _genemtor.layers.RandomNoBeLayer

method), 324
array (pylinac.core.image.Baselmage attribute), 286
array (pylinac.core.image.XIM attribute), 290

array (pylinac.log_analyzer.FluenceBase attribute),
151

array (pylinac.log_analyzer. GammaFluence attribute),
152

ArrayImage (class in pylinac.core.image), 292

AS1000Image (class in
pylinac.core.image_generator.simulators),
325

AS1200Image (class in
pylinac.core.image_generator.simulators),
325

AS500Image (class in
pylinac.core.image_generator.simulators),
325

as_array () (pylinac.core.geometry.Point method),
294

as_binary ()
method), 288
as_scalar () (pylinac.core.geometry.Vector method),

(pylinac.core.image.Baselmage

b (pylinac.core.geometry.Line attribute), 296

B (pylinac.log_analyzer MLCBank attribute), 142

b_logfile (pylinac.log_analyzer.Dynalog attribute),
139

BaseImage (class in pylinac.core.image), 286

bb_location (pylinac.winston_lutz. WinstonLutz2 DResult
attribute), 205

bb_shift_instructions ()
(pylinac.winston_lutz. WinstonLutz
201

bb_shift_vector (pylinac.winston_lutz. WinstonLutz
attribute), 201

bbox_center () (in module pylinac.core.roi), 308

BEAM_CENTER (pylinac.core.profile. Normalization at-
tribute), 299

BEAM_CENTER
attribute), 283

BEAM_CENTER (pylinac.field_analysis.Normalization
attribute), 283

(pylinac.core.profile.Single Profile

method),

(pylinac.field_analysis.Centering

beam_center ()
method), 300

beam_center_index_x_y

295 (pylinac.field_analysis.FieldResult attribute),
assign2machine () (in module pylinac.core.utilities), 282

311 beam_center_to_bottom mm
avg_abs_r_deviation (pylinac.vmat. DRGS at- (pylinac.field_analysis.FieldResult attribute),

tribute), 69 282
386 Index

pylinac Documentation, Release 3.8.2

beam_center_to_left_mm

(pylinac.field_analysis.FieldResult attribute),
282

beam_center_to_right_mm
(pylinac.field_analysis.FieldResult — attribute),
282

beam_center_to_top_mm
(pylinac.field_analysis.FieldResult attribute),
282

beam_hold (pylinac.log_analyzer.DynalogAxisData at-
tribute), 148

beam_name (pylinac.log_analyzer.Subbeam attribute),
150

beam_on (pylinac.log_analyzer.DynalogAxisData at-

tribute), 148

bg_color (pylinac.picketfence. MLCValue attribute),
186

bl_corner (pylinac.core.geometry.Rectangle
tribute), 296

bl_corner (pylinac.vmat.Segment attribute), 73

BMOD (pylinac.picketfence. MLC attribute), 185

BOTH (pylinac.log_analyzer. MLCBank attribute), 143

bottom_penumbra_mm
(pylinac.field_analysis.FieldResult
282

bottom_penumbra_percent_mm
(pylinac.field_analysis.FieldResult
282

bottom_slope_percent_mm
(pylinac.field_analysis.FieldResult
282

bounding_box () (in module pylinac.core.mask), 310

br_corner (pylinac.core.geometry.Rectangle at-
tribute), 296

br_corner (pylinac.vmat.Segment attribute), 73

C

calc_map () (pylinac.log_analyzer. FluenceBase
method), 151

calc_map () (pylinac.log_analyzer. GammaFluence
method), 153

carriage_A (pylinac.log_analyzer.DynalogAxisData
attribute), 149

carriage_B (pylinac.log_analyzer.DynalogAxisData
attribute), 149

CatPhan503 (class in pylinac.ct), 86

CatPhan504 (class in pylinac.ct), 83

CatPhan600 (class in pylinac.ct), 90

CatPhan604 (class in pylinac.ct), 93

catphan_model (pylinac.ct.CatphanResult attribute),
97

catphan_roll_deg
attribute), 97

catphan_size (pylinac.acrACRCT attribute), 108

at-

attribute),

attribute),

attribute),

(pylinac.ct.CatphanResult

catphan_size (pylinac.acrACRMRILarge attribute),
112

catphan_size (pylinac.ct.CatPhan503 attribute), 87

catphan_size (pylinac.ct.CatPhan504 attribute), 84

catphan_size (pylinac.ct.CatPhan600 attribute), 91

catphan_size (pylinac.ct.CatPhan604 attribute), 94

catphan_size (pylinac.quart.QuartDVT attribute),
117

CatPhanModule (class in pylinac.ct), 99

CatphanResult (class in pylinac.ct), 96

cax (pylinac.core.image.DicomImage attribute), 291

cax2bb_distance (pylinac.winston_lutz. WinstonLutz2D
attribute), 204

cax2bb_distance (pylinac.winston_lutz. WinstonLutz2 DResult
attribute), 205

cax2bb_distance ()
(pylinac.winston_lutz. WinstonLutz
201

cax2bb_vector (pylinac.winston_lutz. WinstonLutz2D
attribute), 204

cax2bb_vector (pylinac.winston_lutz. WinstonLutz2 DResult
attribute), 205

cax2epid_distance
(pylinac.winston_lutz. WinstonLutz2D
tribute), 204

cax2epid_distance
(pylinac.winston_lutz. WinstonLutz2 DResult
attribute), 205

cax2epid_distance ()
(pylinac.winston_lutz. WinstonLutz
201

cax2epid_vector (pylinac.winston_lutz. WinstonLutz2D
attribute), 204

cax2epid_vector (pylinac.winston_lutz. WinstonLutz2 DResult
attribute), 205

cax_line_projection
(pylinac.winston_lutz. WinstonLutz2D
tribute), 204

cax_to_bottom_mm (pylinac.field_analysis.FieldResult
attribute), 282

cax_to_left_mm (pylinac.field_analysis.FieldResult
attribute), 282

cax_to_right_mm (pylinac.field_analysis.FieldResult
attribute), 282

cax_to_top_mm (pylinac.field_analysis.FieldResult
attribute), 282

ccw (pylinac.core.profile.CircleProfile attribute), 303

center (pylinac.core.geometry.Line attribute), 296

center (pylinac.core.image.Baselmage attribute), 287

center_x_y (pylinac.vmat.SegmentResult attribute),
71

Centering (class in pylinac.field_analysis), 283

centering_method (pylinac.field_analysis. FieldResult
attribute), 281

method),

at-

method),

at-

Index

387

pylinac Documentation, Release 3.8.2

central_roi_max (pylinac.field_analysis.FieldResult
attribute), 282

(pylinac.starshot.LineManager method),

58

central_roi_mean (pylinac.field_analysis.FieldResult Contrast (class in pylinac.core.roi), 308

attribute), 282
central_roi_min (pylinac.field_analysis.FieldResult
attribute), 282
central_roi_std (pylinac.field_analysis.FieldResult
attribute), 282
check_inversion () (pylinac.core.image.Baselmage
method), 288
check_inversion_by_histogram()
(pylinac.core.image.Baselmage
289
Circle (class in pylinac.core.geometry), 294
circle_center_x_y
(pylinac.starshot.StarshotResults attribute), 57
circle_diameter_mm
(pylinac.starshot.StarshotResults attribute), 57
circle_mask () (pylinac.core.roi.DiskROI method),
308

method),

circle_profile (pylinac.ct. CTP528CP504 at-
tribute), 101
circle_profile (pylinac.starshot.Starshot at-

tribute), 54

circle_radius_mm (pylinac.starshot.StarshotResults
attribute), 57

CircleProfile (class in pylinac.core.profile), 303

clear_data_files() (in module
pylinac.core.utilities), 311

clinac_scale (pylinac.log_analyzer.DynalogHeader
attribute), 148

cnr_constant (pylinac.core.roi.LowContrastDiskROI
attribute), 309

cnr_threshold (pylinac.ct. CTP515Result attribute),
98

coll_2d_iso_diameter_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

CollapsedCircleProfile
pylinac.core.profile), 304

collimator (pylinac.log_analyzerDynalogAxisData
attribute), 149

(class in

contrast (pylinac.core.roi.LowContrastDiskROI at-
tribute), 309

contrast_constant
(pylinac.core.roi.LowContrastDiskROI
tribute), 309

contrast_to_noise
(pylinac.core.roi. LowContrastDiskROI
tribute), 309

contrast_to_noise
(pylinac.quart.QuartHUModule
119

control_point (pylinac.log_analyzer.Subbeam at-
tribute), 150

convert_to_enum()
pylinac.core.utilities), 310

cos () (in module pylinac.core.geometry), 294

couch_2d_iso_diameter_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

couch_angle (pylinac.core.image.LinacDicomlmage
attribute), 291

couch_iso_size (pylinac.winston_lutz. WinstonLutz
attribute), 200

CouchStruct (class in pylinac.log_analyzer), 154

create_error_array ()
(pylinac.log_analyzer MLC method), 146

create_RMS_array () (pylinac.log_analyzer MLC
method), 147

crop () (pylinac.core.image.Baselmage method), 287

ct_calibration_module (pylinac.acrACRCT at-
tribute), 106

ct_module (pylinac.acrACRCTResult attribute), 109

CTModuleOutput (class in pylinac.acr), 109

ctp404 (pylinac.ct.CatphanResult attribute), 97

CTP404CP503 (class in pylinac.ct), 99

CTP404CP504 (class in pylinac.ct), 100

CTP404CP600 (class in pylinac.ct), 100

CTP404CP604 (class in pylinac.ct), 101

CTP404Result (class in pylinac.ct), 97

at-

at-

attribute),

(in module

collimator_angle (pylinac.core.image.LinacDicomIm@de® 4 8 6 (class in pylinac.ct), 102

attribute), 291

collimator_angle (pylinac.log_analyzer.Subbeam
attribute), 150

collimator_iso_size

(pylinac.winston_lutz. WinstonLutz attribute),
200

combine_surrounding_slices () (in module
pylinac.ct), 104

ConstantLayer (class in

pylinac.core.image_generator.layers), 325
construct_rad_lines()

ctp486 (pylinac.ct.CatphanResult attribute), 97
CTP486Result (class in pylinac.ct), 98
CTP515 (class in pylinac.ct), 102

ctp515 (pylinac.ct.CatphanResult attribute), 97
CTP515Result (class in pylinac.ct), 97
ctp528 (pylinac.ct.CatphanResult attribute), 97
CTP528CP503 (class in pylinac.ct), 101
CTP528CP504 (class in pylinac.ct), 101
CTP528CP600 (class in pylinac.ct), 101
CTP528CP604 (class in pylinac.ct), 101
CTP528Result (class in pylinac.ct), 97

388

Index

pylinac Documentation, Release 3.8.2

D

d_ref () (in module pylinac.calibration.tg51), 34

date_created() (pylinac.core.image.Baselmage
method), 287

date_of_analysis (pylinac.core.utilities.ResultBase
attribute), 311

decode_binary () (in module pylinac.core.utilities),
311

Device (class in pylinac.field_analysis), 282

diameter (pylinac.core.geometry.Circle attribute), 295

diameter_mm (pylinac.starshot. Wobble attribute), 57

DicomImage (class in pylinac.core.image), 290

DicomImageStack (class in pylinac.core.image), 292

difference (pylinac.ct. ROIResult attribute), 98

difference (pylinac.log_analyzer.Axis attribute), 143

D1iskROT (class in pylinac.core.roi), 308

dist2cax (pylinac.picketfence.Picket attribute), 186

dist2edge_min () (pylinac.core.image.Baselmage
method), 288

distance_to () (pylinac.core.geometry.Line method),
296

distance_to ()
method), 294

distance_to ()
method), 295

distances () (pylinac.quart.QuartGeometryModule

method), 121

(pylinac.log_analyzer. GammaFluence

tribute), 153

dose_mu_10 (pylinac.calibration.tg51.TG51Photon at-
tribute), 37

dose_mu_10_adjusted
(pylinac.calibration.tg51.TG5 1 Photon
tribute), 37

(pylinac.core.geometry.Point

(pylinac.core.geometry.Vector

distTA at-

at-

(pylinac.calibration.tg51.TG5 1 ElectronLegacy
attribute), 38

dose_mu_dref_adjusted
(pylinac.calibration.tg51.TG51ElectronModern
attribute), 40

dose_mu_zmax (pylinac.calibration.trs398. TRS398Electron
attribute), 45

dose_mu_zmax (pylinac.calibration.trs398. TRS398Photon
attribute), 43

dose_mu_zmax_adjusted
(pylinac.calibration.trs398. TRS398Electron
attribute), 45

dose_mu_zmax_adjusted
(pylinac.calibration.trs398. TRS398Photon
attribute), 43

DoselabMC2kV (class in pylinac.planar_imaging), 244

DoselabMC2MV (class in pylinac.planar_imaging), 241

doseTA (pylinac.log_analyzer. GammaFluence at-
tribute), 153

dpi (pylinac.core.image.Arraylmage attribute), 292

dpi (pylinac.core.image.Dicomlmage attribute), 291

dpi (pylinac.core.image.FileImage attribute), 292

dpmm (pylinac.core.image.Arraylmage attribute), 292

dpmm (pylinac.core.image.DicomImage attribute), 291

dpmm (pylinac.core.image.Filelmage attribute), 292

dref (pylinac.calibration.tg51.TG51ElectronLegacy at-
tribute), 38

dref (pylinac.calibration.tg51. TG51ElectronModern at-
tribute), 40

DRGS (class in pylinac.vmat), 67

DRMLC (class in pylinac.vmat), 70

Dynalog (class in pylinac.log_analyzer), 138

DynalogAxisData (class in pylinac.log_analyzer),
148

dose_mu_dmax (pylinac.calibration.tg51. TG51ElectronLégils 1 ogHeader (class in pylinac.log_analyzer), 147

attribute), 38

dose_mu_dmax (pylinac.calibration.tg51. TG5 1 ElectronModern

attribute), 40

dose_mu_dmax (pylinac.calibration.tg51.TG51Photon
attribute), 37

dose_mu_dmax_adjusted
(pylinac.calibration.tg51.TG51ElectronLegacy
attribute), 39

dose_mu_dmax_adjusted
(pylinac.calibration.tg51.TG5 1 ElectronModern
attribute), 40

dose_mu_dmax_adjusted
(pylinac.calibration.tg51.TG5 1 Photon
tribute), 37

at-

DynalogMatchError (class in pylinac.log_analyzer),

155

DYNAMIC_IMRT (pylinac.log_analyzer.TreatmentType
attribute), 143

E

Edge (class in pylinac.core.profile), 299

Edge (class in pylinac.field_analysis), 283

edge_detection_method
(pylinac.field_analysis.FieldResult
281

ELEKTA (pylinac.field_analysis.Protocol attribute), 283

epid (pylinac.winston_lutz. WinstonLutz2D attribute),
204

attribute),

dose_mu_dref (pylinac.calibration.tg51. TG51ElectronL&@epte_images () (in module pylinac.core.image),

attribute), 38

284

dose_mu_dref (pylinac.calibration.tg51.TG5 1 ElectronMeda&ar (pylinac.picketfence. MLCValue attribute), 186

attribute), 40
dose_mu_dref_adjusted

EXPECTED (pylinac.log_analyzer.Fluence
143

attribute),

Index

389

pylinac Documentation, Release 3.8.2

expected (pylinac.log_analyzer.FluenceStruct at-
tribute), 151
ExpectedFluence (class in pylinac.log_analyzer),

152

F

fahrenheit2celsius ()
pylinac.calibration.tg51), 33

failed_leaves (pylinac.picketfence.PFResult
tribute), 185

failed_leaves()
method), 181

field _bb_offset_mm
(pylinac.planar_imaging. IMTLRad attribute),
261

field bb_offset_mm
(pylinac.planar_imaging. SNCFSQA attribute),
263

field _bb_offset_mm
(pylinac.planar_imaging.Standardlmaging FC2
attribute), 259

field_calculation()
(pylinac.core.profile.SingleProfile
301

field_cax (pylinac.winston_lutz. WinstonLutz2 DResult
attribute), 205

field_data() (pylinac.core.profile.Single Profile

(in module
at-

(pylinac.picketfence.PicketFence

method),

FilterFreeFieldLayer

(class in

pylinac.core.image_generator.layers), 323

find_fwxm_peaks ()

(pylinac.core.profile.CircleProfile

304

find_fwxm_peaks ()

(pylinac.core.profile. MultiProfile

303
find_origin_slice()
method), 108
find_origin_slice ()
method), 112
find_origin_slice()
method), 87
find _origin_slice()
method), 84
find_origin_slice ()
method), 91
find_origin_slice()
method), 94
find_origin_slice()
method), 118

method),

method),
(pylinac.acrACRCT
(pylinac.acACRMRILarge
(pylinac.ct.CatPhan503
(pylinac.ct.CatPhan504
(pylinac.ct.CatPhan600
(pylinac.ct.CatPhan604

(pylinac.quart. QuartDVT

find_peaks () (in module pylinac.core.profile), 305

find_peaks ()
method), 304

find_peaks()
method), 302

(pylinac.core.profile.CircleProfile

(pylinac.core.profile. MultiProfile

method), 300 find_phantom_axis () (pylinac.acrACRCT
field_epid_offset_mm method), 108
(pylinac.planar_imaging.IMTLRad attribute), find_phantom_axis () (pylinac.acrACRMRILarge
261 method), 112
field_epid_offset_mm find_phantom_axis () (pylinac.ct.CatPhan503
(pylinac.planar_imaging. SNCFSQA attribute), method), 87
263 find_phantom_axis () (pylinac.ct.CatPhan504
field_epid_offset_mm method), 84
(pylinac.planar_imaging.StandardImagingFC2 find_phantom_axis () (pylinac.ct.CatPhan600
attribute), 259 method), 91
field_size_horizontal_mm find_phantom_axis () (pylinac.ct.CatPhan604
(pylinac.field_analysis.FieldResult attribute), method), 94
282 find_phantom_axis () (pylinac.quart.QuartDVT
field_size_vertical_mm method), 118
(pylinac.field_analysis.FieldResult attribute), find_phantom_roll () (pylinac.acrACRCT
282 method), 107
FieldAnalysis (class in pylinac.field_analysis), 277 f£ind_phantom_roll () (pylinac.acrACRMRILarge
FieldResult (class in pylinac.field_analysis), 280 method), 111
FileImage (class in pylinac.core.image), 291 find_phantom_roll () (pylinac.ct.CatPhan503
filter () (pylinac.core.image.Baselmage method), method), 88
287 find_phantom_roll () (pylinac.ct.CatPhan504
filter () (pylinac.core.profile.ProfileMixin method), method), 84
298 find_phantom_roll () (pylinac.ct.CatPhan600
FilteredFieldLayer (class in method), 90
pylinac.core.image_generator.layers), 323 find_phantom_roll () (pylinac.ct.CatPhan604
FilterFreeConelayer (class in method), 94
pylinac.core.image_generator.layers), 322 find_phantom_roll () (pylinac.quart.QuartDVT
390 Index

pylinac Documentation, Release 3.8.2

method), 118
find_valleys ()

method), 304
find_valleys()

method), 303

(pylinac.core.profile.CircleProfile

(pylinac.core.profile. MultiProfile

flatness_dose_difference () (in module
pylinac.field_analysis), 284

flatness_dose_ratio () (in module
pylinac.field_analysis), 284

fliplr () (pylinac.core.image.Baselmage method),
287

flipud () (pylinac.core.image.Baselmage method),
287

Fluence (class in pylinac.log_analyzer), 143

fluence (pylinac.log_analyzer.Dynalog attribute), 138

fluence (pylinac.log_analyzer.Trajectorylog at-
tribute), 139

FluenceBase (class in pylinac.log_analyzer), 151

FluenceStruct (class in pylinac.log_analyzer), 151

from_demo () (pylinac.log_analyzerDynalog class
method), 139

from_demo () (pylinac.log_analyzer. TrajectoryLog
class method), 140

from_demo_image ()

(pylinac.field_analysis.FieldAnalysis class
method), 277

from_demo_image ()
(pylinac.picketfence.PicketFence class

method), 181

from_demo_image ()
(pylinac.planar_imaging.DoselabM C2kV
class method), 245

from_demo_image ()
(pylinac.planar_imaging.DoselabMC2MV
class method), 242

from_demo_image ()
(pylinac.planar_imaging. IBAPrimusA
method), 257

from_demo_image ()
(pylinac.planar_imaging. IMTLRad
method), 261

from_demo_image ()
(pylinac.planar_imaging.LasVegas
method), 240

from_demo_image ()
(pylinac.planar_imaging.LeedsTOR
method), 229

from_demo_image ()
(pylinac.planar_imaging.LeedsTORBlue
class method), 231

from_demo_image ()
(pylinac.planar_imaging. PTWEPIDQC
method), 255

from_demo_image ()

class

class

class

class

class

(pylinac.planar_imaging. SNCFSQA
method), 263

from_demo_image ()
(pylinac.planar_imaging. SNCkV
method), 252

from_demo_image ()
(pylinac.planar_imaging. SNCMV
method), 247

from_demo_image ()
(pylinac.planar_imaging. SNCMV12510
method), 250

from_demo_image ()
(pylinac.planar_imaging.StandardImaging FC2
class method), 260

from_demo_image ()
(pylinac.planar_imaging.StandardlmagingQC3
class method), 234

from_demo_image ()
(pylinac.planar_imaging.StandardlmagingQCkV
class method), 237

from_demo_image () (pylinac.starshot.Starshot class
method), 54

class

class

class

class

from_demo_images () (pylinac.acrACRCT class
method), 108
from_demo_images () (pylinac.acrACRMRILarge

class method), 112
from_demo_images () (pylinac.ct.CatPhan503 class

method), 88

from_demo_images () (pylinac.ct.CatPhan504 class
method), 84

from_demo_images () (pylinac.ct.CatPhan600 class
method), 91

from_demo_images () (pylinac.ct.CatPhan604 class
method), 95

from_demo_images () (pylinac.quart.QuartDVT
class method), 118

from_demo_images () (pylinac.vmat.DRGS class
method), 69

from_demo_images () (pylinac.vmat. DRMLC class
method), 70

from_demo_images () (pylinac.vmat. VMATBase

class method), 72

from_demo_images ()
(pylinac.winston_lutz. WinstonLutz
method), 200

from_dlog() (pylinac.log_analyzer MLC
method), 144

from multiple_images ()
(pylinac.picketfence.PicketFence
method), 181

from_multiple_images ()
(pylinac.starshot.Starshot
54

from_multiples ()

class

class

class

class method),

(pylinac.core.image.Baselmage

Index

391

pylinac Documentation, Release 3.8.2

class method), 287

from_tlog() (pylinac.log_analyzer MLC class
method), 144

from_url () (pylinac.acrACRCT class method), 108

from_url () (pylinac.acACRMRILarge class
method), 112

from_url () (pylinac.ct.CatPhan503 class method), 88

from_url () (pylinac.ct.CatPhan504 class method), 84

from_url () (pylinac.ct.CatPhan600 class method), 91

from_url () (pylinac.ct.CatPhan604 class method), 95

from_url () (pylinac.picketfence.PicketFence class
method), 181

from_url () (pylinac.planar_imaging. DoselabMC2kV
class method), 245

from_url () (pylinac.planar_imaging.DoselabMC2MV
class method), 242

from_url () (pylinac.planar_imaging.IBAPrimusA
class method), 257

from_url () (pylinac.planar_imaging.IMTLRad class
method), 261

from_url () (pylinac.planar_imaging.LasVegas class
method), 240

from_url () (pylinac.planar_imaging.LeedsTOR class
method), 230

from_url () (pylinac.planar_imaging.LeedsTORBlue
class method), 232

from_url () (pylinac.planar_imaging. PTWEPIDQC
class method), 255

from_url () (pylinac.planar_imaging.SNCFSQA class
method), 263

from_url () (pylinac.planar_imaging. SNCkV class
method), 252

from_url () (pylinac.planar_imaging. SNCMV class
method), 247

from_url () (pylinac.planar_imaging. SNCMVI12510
class method), 250

method), 112

from_zip () (pylinac.core.image.DicomlmageStack
class method), 293

from_zip () (pylinac.ct.CatPhan503 class method), 88

from_zip () (pylinac.ct.CatPhan504 class method), 84

from_zip () (pylinac.ct.CatPhan600 class method), 91

from_zip () (pylinac.ct.CatPhan604 class method), 95

from_zip () (pylinac.log_analyzerMachineLogs class
method), 141

from_zip () (pylinac.quart.QuartDVT class method),
118

from_zip () (pylinac.starshot.Starshot class method),
55

from_zip () (pylinac.vmat. DRGS class method), 69

from_zip () (pylinac.vmat. DRMLC class method), 70

from_zip () (pylinac.vmat.VMATBase class method),
72

from_zip () (pylinac.winston_lutz. WinstonLutz class
method), 200

full_leaf nums (pylinac.picketfence. MLCValue at-
tribute), 186

FWHM (pylinac.core.profile. Edge attribute), 299

FWHM (pylinac.field_analysis.Edge attribute), 283

fwxm_data () (pylinac.core.profile.SingleProfile
method), 300

G

GAMMA (pylinac.log_analyzer.Fluence attribute), 143

gamma (pylinac.log_analyzer.FluenceStruct attribute),
151

GAMMA (pylinac.log_analyzer.Graph attribute), 142

gamma () (pylinac.core.image.Baselmage method), 289

gamma () (pylinac.core.profile.SingleProfile method),
301

gamma_1d () (in module pylinac.core.profile), 297

gamma_2d () (in module pylinac.core.image), 293

from_url () (pylinac.planar_imaging.StandardlmagingF€2mmaF 1uence (class in pylinac.log_analyzer), 152

class method), 260

from_url () (pylinac.planar_imaging.StandardlmagingQC3

class method), 235

from_url () (pylinac.planar_imaging.StandardlmagingQCkV

class method), 237

from_url () (pylinac.quart. QuartDVT class method),
118

from_url () (pylinac.starshot.Starshot class method),
54

from_url () (pylinac.vmat.DRGS class method), 69

from_url () (pylinac.vmat. DRMLC class method), 70

from_url () (pylinac.vmat.VMATBase class method),
72

from_url () (pylinac.winston_lutz. WinstonLutz class
method), 200

from_zip () (pylinac.acr.ACRCT class method), 108

from_zip () (pylinac.acACRMRILarge class

gantry (pylinac.log_analyzer.DynalogAxisData at-

tribute), 148

gantry_3d_iso_diameter_mm

(pylinac.winston_lutz. WinstonLutzResult

attribute), 203

gantry_angle (pylinac.core.image.LinacDicomlmage
attribute), 291

gantry_angle (pylinac.log_analyzer.Subbeam at-
tribute), 150

gantry_coll_3d_iso_diameter_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

gantry_coll_iso_size
(pylinac.winston_lutz. WinstonLutz
200

gantry_iso_size (pylinac.winston_lutz. WinstonLutz
attribute), 200

attribute),

392

Index

pylinac Documentation, Release 3.8.2

GaussianFilterLayer (class in
pylinac.core.image_generator.layers), 324

288

ground () (pylinac.core.profile. ProfileMixin method),

generate_dicom () (pylinac.core.image_generator.simulators.AS POG0Image

method), 325

generate_dicom () (pylinac.core.image _generatonsimulljtors.AS 1200Image

method), 325

HALCYON_DISTAL (pylinac.picketfence MLC at-

generate_dicom () (pylinac.core.image_generator.simulators.AS3ABlire)gd 85

method), 325
generate_picketfence () (in module
pylinac.core.image_generator.utils), 326
generate_winstonlutz () (in module
pylinac.core.image_generator.utils), 326
generate_winstonlutz_cone () (in module
pylinac.core.image_generator.utils), 327

HALCYON_PROXIMAL
attribute), 185

HD_MILLENNIUM (pylinac.picketfence. MLC attribute),
185

header (pylinac.log_analyzer.Dynalog attribute), 138

header (pylinac.log_analyzer.TrajectoryLog attribute),
139

(pylinac.picketfence. MLC

GEOMETRIC_CENTER (pylinac.core.profile. Normalization Hi ghCont rastDiskROI (class in pylinac.core.roi),

attribute), 299
GEOMETRIC_CENTER (pylinac.field_analysis.Centering
attribute), 283

GEOMETRIC_CENTER (pylinac.field_analysis.Normalization

attribute), 283
geometric_center()

(pylinac.core.profile.Single Profile method),
300

geometric_center_index_x_y
(pylinac.field_analysis.FieldResult attribute),

282
geometric_distortion_module
(pylinac.acrACRMRIResult attribute), 113
geometric_module (pylinac.quart.QuartDVTResult
attribute), 122
GeometricLine (class in pylinac.ct), 103
geometry_passed (pylinac.ct. CTP404Result
tribute), 97
get_bg_color () (pylinac.vmat.Segment method), 74
get_error_percentile ()
(pylinac.log_analyzer MLC method), 146
get_fit () (pylinac.picketfence.Picket method), 186
get_leaves () (pylinac.log_analyzerMLC method),
146
get_peaks ()
57
get_regions () (in module pylinac.ct), 104
get_RMS () (pylinac.log_analyzer. MLC method), 146
get_RMS_avg () (pylinac.log_analyzer MLC method),

at-

(pylinac.starshot.StarProfile method),

310

HISTOGRAM (pylinac.log_analyzer.Graph attribute), 142

histogram() (pylinac.log_analyzer. GammaFluence

method), 153

horiz_profile (pylinac.field_analysis.FieldAnalysis
attribute), 277

hu_linearity_passed (pylinac.ct. CTP404Result
attribute), 97

hu_module (pylinac.quart. QuartDVTResult attribute),
122

hu_rois (pylinac.ct. CTP404Result attribute), 97

hu_tolerance (pylinac.ct. CTP404Result attribute),
97

HUD1skROTI (class in pylinac.ct), 102

IBAPrimusA (class in pylinac.planar_imaging), 256

identify_other_file()
(pylinac.log_analyzer.Dynalog static method),
139

image (pylinac.field_analysis.FieldAnalysis attribute),
277

image (pylinac.starshot.Starshot attribute), 54

image_array (pylinac.core.profile.CircleProfile
attribute), 303

image_details (pylinac.winston_lutz. WinstonLutzResult

attribute), 203
(pylinac.core.image.DicomImageStack
tribute), 292

images at-

145 images (pylinac.winston_lutz. WinstonLutz attribute),
get_RMS_max () (pylinac.log_analyzer MLC method), 200

145 IMAGING (pylinac.log_analyzer.TreatmentType at-
get_RMS_percentile() tribute), 143

(pylinac.log_analyzer.MLC method), 146 IMTLRad (class in pylinac.planar_imaging), 260
get_snapshot_values () inflection data ()

(pylinac.log_analyzer MLC method), 147 (pylinac.core.profile.SingleProfile method),
get_url () (in module pylinac.core.io), 307 300
Graph (class in pylinac.log_analyzer), 142 INFLECTION DERIVATIVE
ground () (pylinac.core.image.Baselmage method), (pylinac.core.profile.Edge attribute), 299
Index 393

pylinac Documentation, Release 3.8.2

INFLECTION_DERIVATIVE
(pylinac.field_analysis.Edge attribute), 283

INFLECTION_HILL (pylinac.core.profile.Edge
tribute), 299

INFLECTION_HILL (pylinac.field_analysis.Edge at-
tribute), 283

info (pylinac.core.image.FileImage attribute), 291

(pylinac.ct.CTP486

at-

integral_non_uniformity
attribute), 102
integral non_uniformity
(pylinac.ct. CTP486Result attribute), 98
integral_non_uniformity
(pylinac.quart. QuartUniformityModule
tribute), 120
Interpolation (class in pylinac.core.profile), 298
Interpolation (class in pylinac.field_analysis), 283
interpolation_method

at-

(pylinac.field_analysis.FieldResult attribute),
281

invert () (pylinac.core.image.Baselmage method),
287

invert () (pylinac.core.profile.ProfileMixin method),
298

is_close () (in module pylinac.core.utilities), 311

is_dicom() (in module pylinac.core.io), 306

is_dicom_image () (in module pylinac.core.io), 306

is_hdmlc (pylinac.log_analyzer.TrajectoryLog at-
tribute), 140

is_image () (in module pylinac.core.image), 285

JawStruct (class in pylinac.log_analyzer), 154

K

k_s () (in module pylinac.calibration.trs398), 41

kp_r50 () (in module pylinac.calibration.tg51), 34

kg (pylinac.calibration.tg51.TG5 1 ElectronLegacy
attribute), 38

ka (pylinac.calibration.tg51.TG51ElectronModern at-
tribute), 40

ka (pylinac.calibration.tg51.TG51Photon attribute), 37

kg (pylinac.calibration.trs398. TRS398Electron at-
tribute), 45

kqa (pylinac.calibration.trs398. TRS398Photon attribute),
43

kg _electron () (in module pylinac.calibration.tg51),
35

kg_electron () (in
pylinac.calibration.trs398), 41

kg_photon () (in module pylinac.calibration.trs398),
41

module

kg_photon_pddx () (in module
pylinac.calibration.tg51), 35
kg_photon_tpr () (in module

pylinac.calibration.tg51), 35

L

LasVegas (class in pylinac.planar_imaging), 238
latl (pylinac.log_analyzer.CouchStruct attribute), 155
1lcv (pylinac.ct. CTP404CP504 attribute), 100

is_image_slice () (pylinac.core.image.DicomImageStticgv (pylinac.quart.QuartHUModule attribute), 119

static method), 293
is_iterable () (in module pylinac.core.utilities), 311
is_map_calced () (pylinac.log_analyzer.FluenceBase

method), 151
is_phantom_in_view () (pylinac.ct.Slice method),
99

is_phantom_in_view ()
(pylinac.quart. QuartGeometryModule
method), 121
is_phantom_in_view ()
(pylinac.quart.QuartHUModule
119
is_phantom_in_view ()
(pylinac.quart. QuartUniformityModule
method), 120
is_url () (in module pylinac.core.io), 307

J

jaw_x1 (pylinac.log_analyzer.Subbeam attribute), 150

jaw_x2 (pylinac.log_analyzer.Subbeam attribute), 150

jaw_y1 (pylinac.log_analyzer.Subbeam attribute), 151

jaw_y2 (pylinac.log_analyzer.Subbeam attribute), 151

jaws (pylinac.log_analyzer.DynalogAxisData attribute),
149

method),

leaf_axes (pylinac.log_analyzer MLC attribute), 144
leaf_moved () (pylinac.log_analyzerMLC method),
145
leaf_under_y_Jjaw ()
method), 147
LeedsTOR (class in pylinac.planar_imaging), 228
LeedsTORBlue (class in pylinac.planar_imaging), 231
left_guard_separated (pylinac.picketfence.Picket
attribute), 186
left_penumbra_mm (pylinac.field_analysis.FieldResult
attribute), 282
left_penumbra_percent_mm
(pylinac.field_analysis.FieldResult
282

(pylinac.log_analyzer MLC

attribute),

LEFT_RIGHT (pylinac.picketfence.Orientation at-
tribute), 184

left_slope_percent_mm
(pylinac.field_analysis.FieldResult attribute),

282
length (pylinac.core.geometry.Line attribute), 296
length_mm (pylinac.ct.GeometricLine attribute), 103
LinacDicomImage (class in pylinac.core.image), 291
Line (class in pylinac.core.geometry), 295

394

Index

pylinac Documentation, Release 3.8.2

line_distances_mm (pylinac.ct. CTP404Result at-
tribute), 97
(pylinac.core.profile.Interpolation attribute),

298

LINEAR (pylinac.field_analysis.Interpolation attribute),
283

LineManager (class in pylinac.starshot), 57

lines (pylinac.starshot.Starshot attribute), 54

load () (in module pylinac.core.image), 285

load_folder () (pylinac.log_analyzerMachineLogs
method), 141

load_log () (in module pylinac.log_analyzer), 138

load_multiples () (in module pylinac.core.image),

LINEAR

286

load_url () (in module pylinac.core.image), 285
localize () (pylinac.acrACRCT method), 109
localize () (pylinac.acrACRMRILarge method), 111
localize () (pylinac.ct.CatPhan503 method), 88
localize () (pylinac.ct.CatPhan504 method), 85
localize () (pylinac.ct.CatPhan600 method), 92
localize () (pylinac.ct.CatPhan604 method), 95

localize () (pylinac.quart. QuartDVT method), 118
long (pylinac.log_analyzer. CouchStruct attribute), 155
long_profile (pylinac.ct.ThicknessROI attribute),

103

low_contrast_module (pylinac.acrACRCT at-
tribute), 106

low_contrast_module (pylinac.acrACRCTResult

attribute), 109
low_contrast_visibility
(pylinac.ct.CTP404Result attribute), 97
LowContrastDiskROI (class in pylinac.core.roi),
308
LowContrastModuleOutput (class in pylinac.acr),
110

lru_cache () (in module pylinac.core.decorators), 312

M

m (pylinac.core.geometry.Line attribute), 295
m_corrected () (in module pylinac.calibration.tg51),
34
m_corrected () (in
pylinac.calibration.trs398), 42
MachineLogs (class in pylinac.log_analyzer), 140
magnification_factor
(pylinac.planar_imaging.DoselabMC2kV
attribute), 245
magnification_factor
(pylinac.planar_imaging.DoselabMC2MV
attribute), 242
magnification_factor
(pylinac.planar_imaging.IBAPrimusA
tribute), 257

module

at-

magnification_factor
(pylinac.planar_imaging.IMTLRad attribute),
261

magnification_factor
(pylinac.planar_imaging.LasVegas
240

magnification_factor
(pylinac.planar_imaging.LeedsTOR attribute),
230

magnification_factor
(pylinac.planar_imaging.LeedsTORBlue
attribute), 232

magnification_factor
(pylinac.planar_imaging. PTWEPIDQC
tribute), 255

magnification_factor
(pylinac.planar_imaging. SNCFSQA attribute),
263

magnification_factor

attribute),

at-

(pylinac.planar_imaging. SNCkV attribute),
252

magnification_factor
(pylinac.planar_imaging. SNCMV attribute),

247

magnification_factor
(pylinac.planar_imaging. SNCMV12510
tribute), 250

magnification_factor
(pylinac.planar_imaging.StandardImaging FC2
attribute), 260

magnification_factor
(pylinac.planar_imaging.StandardlmagingQC3
attribute), 235

magnification_factor
(pylinac.planar_imaging.StandardlmagingQCkV
attribute), 237

MANUAL (pylinac.field_analysis.Centering attribute), 283

marker_lines (pylinac.picketfence. MLCValue at-
tribute), 187

match_points ()
method), 58

MAX (pylinac.core.profile. Normalization attribute), 299

max (pylinac.core.roi. HighContrastDiskROI attribute),
310

max (pylinac.core.roi.RectangleROI attribute), 310

MAX (pylinac.field_analysis.Normalization attribute), 283

max_2d_cax_to_bb_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

max_2d_cax_to_epid_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

max_abs_error (pylinac.picketfence. MLCValue at-
tribute), 187

at-

(pylinac.starshot.LineManager

Index

395

pylinac Documentation, Release 3.8.2

max_coll_rms_deviation_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

max_couch_rms_deviation_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

max_deviation_percent
(pylinac.vmat. VMATResult attribute), 71

max_epid_rms_deviation_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

max_error (pylinac.picketfence.PicketFence attribute),
181

max_error_leaf (pylinac.picketfence.PFResult at-
tribute), 185

max_error_leaf (pylinac.picketfence.PicketFence at-
tribute), 181

max_error_mm (pylinac.picketfence. PFResult
tribute), 185

max_error_picket
attribute), 185

max_error_picket (pylinac.picketfence.PicketFence
attribute), 181

max_gantry_rms_deviation_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

max_r_deviation (pylinac.vmat. DRGS attribute), 69

max_r_deviation (pylinac.vmat. DRMLC attribute),
70

max_r_deviation
tribute), 72

mbar2kPa () (in module pylinac.calibration.tg51), 33

mean (pylinac.core.roi.RectangleROI attribute), 310

mean_2d_cax_to_bb_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

mean_2d_cax_to_epid_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

mean_picket_spacing

at-

(pylinac.picketfence.PFResult

(pylinac.vmat.VMATBase at-

(pylinac.picketfence.PicketFence attribute),
181

mean_picket_spacing_mm
(pylinac.picketfence. PFResult attribute),

185
meas_slice_thickness (pylinac.ct. CTP404CP504
attribute), 100
meas_slice_thickness
(pylinac.quart.QuartHUModule
119
measured_slice_thickness_mm
(pylinac.ct. CTP404Result attribute), 97
median_2d_cax_to_bb_mm
(pylinac.winston_lutz. WinstonLutzResult

attribute),

attribute), 203

median_2d_cax_to_epid_mm
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203

Metadata (class in pylinac.log_analyzer), 143

metadata (pylinac.core.image.Dicomlmage attribute),
290

metadata (pylinac.core.image.DicomlmageStack at-
tribute), 293

MICHELSON (pylinac.core.roi.Contrast attribute), 308

MILLENNIUM (pylinac.picketfence. MLC attribute), 185

min (pylinac.core.roi. HighContrastDiskROI attribute),
310

min (pylinac.core.roi.RectangleROI attribute), 310

MLC (class in pylinac.log_analyzer), 144

MLC (class in pylinac.picketfence), 184

mlc (pylinac.log_analyzer.DynalogAxisData attribute),
149

mlc_skew (pylinac.picketfence. PFResult attribute), 185

mlc_skew () (pylinac.picketfence.PicketFence
method), 184

MLCArrangement (class in pylinac.picketfence), 184

MLCBank (class in pylinac.log_analyzer), 142

MLCTI (pylinac.picketfence. MLC attribute), 185

MLCValue (class in pylinac.picketfence), 186

mm_per_pixel (pylinac.acrACRCT attribute), 109

mm_per_pixel (pylinac.acrACRMRILarge attribute),
112

mm_per_pixel (pylinac.ct.CatPhan503 attribute), 88

mm_per_pixel (pylinac.ct.CatPhan504 attribute), 85

mm_per_pixel (pylinac.ct.CatPhan600 attribute), 92

mm_per_pixel (pylinac.ct.CatPhan604 attribute), 95

mm_per_pixel (pylinac.quart.QuartDVT attribute),
119

mmHg2kPa () (in module pylinac.calibration.tg51), 33

moving_leaves (pylinac.log_analyzerMLC at-
tribute), 144

MRGeometricDistortionModuleOutput (class
in pylinac.acr), 114

MRSlicellModuleOutput (class in pylinac.acr),
113

MRS1licelModuleOutput (class in pylinac.acr), 113

MRUniformityModuleOutput (class in
pylinac.acr), 113

mt £ (pylinac.ct. CTP528CP504 attribute), 101

mtf_1p_mm (pylinac.ct. CTP528Result attribute), 97

mu (pylinac.log_analyzer.DynalogAxisData attribute),
148

mu_delivered (pylinac.log_analyzer.Subbeam at-
tribute), 150

MultiProfile (class in pylinac.core.profile), 302

N

name (pylinac.ct. ROIResult attribute), 98

396

Index

pylinac Documentation, Release 3.8.2

next_dose_index (pylinac.log_analyzer.DynalogAxisDatam_leaves

attribute), 148

nominal_length_mm (pylinac.ct.GeometricLine at-
tribute), 103

nominal_value (pylinac.ct. ROIResult attribute), 98

NONE (pylinac.core.profile.Interpolation attribute), 298

NONE (pylinac.core.profile. Normalization attribute), 299

NONE (pylinac.field_analysis.Interpolation attribute),
283

NONE (pylinac.field_analysis.Normalization attribute),
283

NONE (pylinac.field_analysis. Protocol attribute), 283

Normalization (class in pylinac.core.profile), 299

Normalization (class in pylinac.field_analysis), 283

normalization_method
(pylinac.field_analysis.FieldResult
281

normalize ()
method), 288

normalize ()
method), 298

NotADynalogError (class in pylinac.log_analyzer),
155

NotALogError (class in pylinac.log_analyzer), 155

num_beamholds (pylinac.log_analyzer.Dynalog at-
tribute), 139

num_beamholds (pylinac.log_analyzer.TrajectoryLog
attribute), 140

attribute),
(pylinac.core.image.Baselmage

(pylinac.core.profile. ProfileMixin

num_coll_images (pylinac.winston_lutz. WinstonLutzResult

attribute), 203

num_couch_images (pylinac.winston_lutz. WinstonLutzRgsult nt at 1 on

attribute), 203
num_dlogs (pylinac.log_analyzer.MachineLogs at-
tribute), 141
num_gantry_coll_images
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203
num_gantry_images
(pylinac.winston_lutz. WinstonLutzResult
attribute), 203
num_images (pylinac.actACRCT attribute), 109
num_images (pylinac.acrACRCTResult attribute), 109

num_images (pylinac.acrACRMRILarge attribute),
113

num_images (pylinac.acrACRMRIResult attribute),
113

num_images (pylinac.ct.CatPhan503 attribute), 88
num_images (pylinac.ct.CatPhan504 attribute), 85
num_images (pylinac.ct.CatPhan600 attribute), 92
num_images (pylinac.ct.CatPhan604 attribute), 95
num_images (pylinac.ct.CatphanResult attribute), 97
num_images (pylinac.quart.QuartDVT attribute), 119
num_images (pylinac.quart.QuartDVIResult at-
tribute), 122

(pylinac.log_analyzer MLC attribute),
144

num_logs (pylinac.log_analyzer.MachineLogs at-
tribute), 141

num_mlc_leaves (pylinac.log_analyzer.DynalogHeader
attribute), 148

num_moving_leaves (pylinac.log_analyzerMLC at-
tribute), 144

num_pairs (pylinac.log_analyzer MLC attribute), 144

num_pickets (pylinac.picketfence.PicketFence at-

tribute), 181
num_rois_seen (pylinac.ct. CTP515Result attribute),
98

num_snapshots (pylinac.log_analyzer. DynalogAxisData

attribute), 148

num_snapshots (pylinac.log_analyzerMLC at-
tribute), 144

num_tlogs (pylinac.log_analyzer.MachineLogs at-
tribute), 141

num_total_images (pylinac.winston_lutz. WinstonLutzResult

attribute), 203
number_of_pickets (pylinac.picketfence.PFResult
attribute), 185

O

offset (pylinac.ct. CTP404Result attribute), 97

offsets_from cax_mm

(pylinac.picketfence. PFResult

185

Orientation (class in pylinac.picketfence), 184

(pylinac.picketfence.PicketFence at-
tribute), 184

origin_slice (pylinac.acrACRCTResult attribute),
109

origin_slice (pylinac.acrACRMRIResult attribute),
113

origin_slice (pylinac.ct.CatphanResult attribute),
97

origin_slice
attribute), 122

overall_passed (pylinac.ct. CTP486 attribute), 102

attribute),

(pylinac.quart. QuartDVTResult

overall_passed (pylinac.quart. QuartUniformityModule

attribute), 120

P

p_ion () (in module pylinac.calibration.tg51), 33

p_pol () (in module pylinac.calibration.tg51), 33

p_tp () (in module pylinac.calibration.tg51), 33

pair_moved () (pylinac.log_analyzerMLC method),
145

pass_fail_color
tribute), 103

pass_prcnt (pylinac.log_analyzer. GammaFluence at-
tribute), 153

(pylinac.ct.GeometricLine at-

Index

397

pylinac Documentation, Release 3.8.2

passed (pylinac.core.roi.LowContrastDiskROI at-
tribute), 309

passed (pylinac.ct. CTP486Result attribute), 98

passed (pylinac.ct. GeometricLine attribute), 103

passed (pylinac.ct. HUDIiskROI attribute), 103

passed (pylinac.ct. ROIResult attribute), 98

passed (pylinac.picketfence. MLCValue attribute), 186

passed (pylinac.picketfence. PFResult attribute), 185

passed (pylinac.picketfence.PicketFence attribute), 181

passed (pylinac.starshot.Starshot attribute), 56

passed (pylinac.starshot.StarshotResults attribute), 57

passed (pylinac.vmat.Segment attribute), 73

passed (pylinac.vmat.SegmentResult attribute), 71

passed (pylinac.vmat. VMATResult attribute), 71

passed_action (pylinac.picketfence. MLCValue
tribute), 186

passed_cnr_constant
(pylinac.core.roi.LowContrastDiskROI
tribute), 309

passed_contrast_constant
(pylinac.core.roi. LowContrastDiskROI
tribute), 309

passed_geometry (pylinac.ct. CTP404CP504
tribute), 100

passed_geometry (pylinac.quart. QuartHUModule
attribute), 119

passed_hu (pylinac.ct. CTP404CP504 attribute), 100

passed_hu (pylinac.quart.QuartHUModule attribute),
120

passed_thickness (pylinac.ct. CTP404CP504 at-
tribute), 100

passed_thickness (pylinac.quart. QuartHUModule
attribute), 120

passed_visibility
(pylinac.core.roi.LowContrastDiskROI
tribute), 309

at-

at-

at-

at-

at-

PerfectConelayer (class in
pylinac.core.image_generator.layers), 322
PerfectFieldLayer (class in

pylinac.core.image_generator.layers), 322
PFDicomImage (class in pylinac.picketfence), 185
PFResult (class in pylinac.picketfence), 185
phan_center (pylinac.ct.Slice attribute), 99
phan_center (pylinac.quart.QuartGeometryModule

attribute), 121
phan_center (pylinac.quart.QuartHUModule

tribute), 120
phan_center (pylinac.quart.QuartUniformityModule

attribute), 121
phantom_angle (pylinac.planar_imaging. IBAPrimusA

attribute), 256
phantom_bbox_size_px

(pylinac.planar_imaging.DoselabM C2kV

attribute), 245
phantom_bbox_size_px

(pylinac.planar_imaging.DoselabMC2MV

attribute), 242
phantom_bbox_size_px

(pylinac.planar_imaging.IBAPrimusA

tribute), 257
phantom_bbox_size_px

(pylinac.planar_imaging. IMTLRad attribute),

261
phantom_bbox_size_px

(pylinac.planar_imaging.LasVegas

240
phantom_bbox_size_px

(pylinac.planar_imaging.LeedsTOR attribute),

230
phantom_bbox_size_px

(pylinac.planar_imaging.LeedsTORBlue

attribute), 232

at-

attribute),

passfail_array (pylinac.log_analyzer. GammaFluence phantom_bbox_size_px

attribute), 152

path (pylinac.core.image.Baselmage attribute), 286

patient_name (pylinac.log_analyzer.DynalogHeader
attribute), 147

pddx (pylinac.calibration.tg51.TG51Photon attribute),
37

pddx () (in module pylinac.calibration.tg51), 34

peaks (pylinac.core.profile. MultiProfile attribute), 302

penumbra () (pylinac.core.profile.Single Profile
method), 301

percent_leaves_passing
(pylinac.picketfence. PFResult
185

percent_passing (pylinac.picketfence.PicketFence
attribute), 181

PerfectBBLayer (class in
pylinac.core.image_generator.layers), 324

attribute),

(pylinac.planar_imaging. PTWEPIDQC
tribute), 255
phantom_bbox_size_px
(pylinac.planar_imaging. SNCFSQA attribute),
263
phantom_bbox_size_px

at-

(pylinac.planar_imaging.SNCkV attribute),
252

phantom_bbox_size_px
(pylinac.planar_imaging. SNCMV attribute),

247
phantom_bbox_size_px
(pylinac.planar_imaging. SNCMV12510
tribute), 250
phantom_bbox_size_px
(pylinac.planar_imaging.StandardImaging FC2
attribute), 260

at-

398

Index

pylinac Documentation, Release 3.8.2

phantom_bbox_size_px
(pylinac.planar_imaging.StandardlmagingQC3
attribute), 235

phantom_bbox_size_px

252

phantom_ski_region
(pylinac.planar_imaging. SNCMV
247

attribute),

(pylinac.planar_imaging.StandardImagingQCkV phantom_ski_region

attribute), 237

phantom_model (pylinac.acACRCTResult attribute),
109

phantom_model
tribute), 113

phantom_model (pylinac.quart.QuartDVTResult at-
tribute), 122

phantom_roi (pylinac.ct.Slice attribute), 99

phantom_roi (pylinac.quart.QuartGeometryModule
attribute), 121

phantom_roi (pylinac.quart.QuartHUModule
tribute), 120

phantom_roi (pylinac.quart.QuartUniformityModule
attribute), 121

phantom_roll_deg (pylinac.acrACRCTResult at-
tribute), 109

phantom_roll_deg (pylinac.achACRMRIResult at-
tribute), 113

phantom_roll_deg (pylinac.quart.QuartDVTResult
attribute), 122

phantom_ski_region
(pylinac.planar_imaging.DoselabM C2kV
attribute), 245

phantom_ski_region
(pylinac.planar_imaging.DoselabM C2MV
attribute), 242

phantom_ski_region
(pylinac.planar_imaging.IBAPrimusA
tribute), 257

phantom_ski_region
(pylinac.planar_imaging. IMTLRad attribute),
261

phantom_ski_region
(pylinac.planar_imaging.LasVegas
240

phantom_ski_region
(pylinac.planar_imaging.LeedsTOR attribute),
230

phantom_ski_region
(pylinac.planar_imaging.LeedsTORBlue
attribute), 232

phantom_ski_region
(pylinac.planar_imaging. PTWEPIDQC
tribute), 255

phantom_ski_region
(pylinac.planar_imaging. SNCFSQA attribute),
263

phantom_ski_region
(pylinac.planar_imaging.SNCkV

(pylinac.acrACRMRIResult at-

at-

at-

attribute),

at-

attribute),

(pylinac.planar_imaging. SNCMV12510
tribute), 250

phantom_ski_region
(pylinac.planar_imaging.Standardlmaging FC2
attribute), 260

phantom_ski_region
(pylinac.planar_imaging.StandardImagingQC3
attribute), 235

phantom_ski_region
(pylinac.planar_imaging.StandardlmagingQCkV
attribute), 237

physical_shape (pylinac.core.image.Baselmage at-
tribute), 287

Picket (class in pylinac.picketfence), 186

picket_positions (pylinac.picketfence. MLCValue
attribute), 186

PicketFence (class in pylinac.picketfence), 180

pixel_array (pylinac.core.roi.RectangleROI
tribute), 310

(pylinac.core.roi.DiskROI attribute),

at-

at-

pixel_value
308

pixel_value (pylinac.core.roi.RectangleROI
tribute), 310

plan_filename (pylinac.log_analyzer.DynalogHeader
attribute), 148

plot () (pylinac.core.image.Baselmage method), 287

plot () (pylinac.core.image.DicomlImageStack method),
293

at-

plot () (pylinac.core.profile. MultiProfile method), 302

plot () (pylinac.core.profile.SingleProfile method), 302
plot () (pylinac.ct.CatPhanModule method), 99

plot () (pylinac.quart.QuartGeometryModule method),

122
plot () (pylinac.quart. QuartHUModule method), 120
plot () (pylinac.quart. QuartUniformityModule
method), 121
plot () (pylinac.starshot.LineManager method), 58
plot () (pylinac.winston_lutz. WinstonLutz2D method),

204

plot2axes () (pylinac.core.geometry.Circle method),
295

plot2axes () (pylinac.core.geometry.Line method),
296

plot2axes () (pylinac.core.geometry.Rectangle
method), 297

plot2axes () (pylinac.core.profile.CircleProfile

method), 304
plot2axes () (pylinac.core.profile.CollapsedCircleProfile
method), 305

Index

399

pylinac Documentation, Release 3.8.2

plot2axes () (pylinac.core.roi.DiskROI method), 308

plot2axes () (pylinac.picketfence. MLCValue
method), 186

plot2axes () (pylinac.vmat.Segment method), 73

plot_actual () (pylinac.log_analyzer.Axis method),

144
plot_analyzed_image () (pylinac.acrACRCT
method), 107

plot_analyzed_image ()
(pylinac.acrACRMRILarge method), 111

plot_analyzed_image () (pylinac.ct.CatPhan503
method), 88

plot_analyzed_image () (pylinac.ct.CatPhan504
method), 85

plot_analyzed_image () (pylinac.ct.CatPhan600
method), 92

plot_analyzed_image () (pylinac.ct.CatPhan604
method), 95

plot_analyzed_image ()
(pylinac.field_analysis.FieldAnalysis method),
280

plot_analyzed_image ()
(pylinac.picketfence.PicketFence
183

plot_analyzed_image ()
(pylinac.planar_imaging.DoselabM C2kV
method), 245

plot_analyzed_image ()
(pylinac.planar_imaging.DoselabMC2MV
method), 242

plot_analyzed_image ()
(pylinac.planar_imaging.IBAPrimusA method),
258

plot_analyzed_image ()
(pylinac.planar_imaging.IMTLRad method),
261

plot_analyzed_image ()
(pylinac.planar_imaging.LasVegas
240

plot_analyzed_image ()
(pylinac.planar_imaging.LeedsTOR method),
230

plot_analyzed_image ()
(pylinac.planar_imaging.LeedsTORBlue
method), 232

plot_analyzed_image ()
(pylinac.planar_imaging. PTWEPIDQC
method), 255

plot_analyzed_image ()
(pylinac.planar_imaging. SNCFSQA method),
263

plot_analyzed_image ()
(pylinac.planar_imaging.SNCkV
252

method),

method),

method),

plot_analyzed_image ()
(pylinac.planar_imaging. SNCMV
247

plot_analyzed_image ()
(pylinac.planar_imaging. SNCMV12510
method), 250

plot_analyzed_image ()
(pylinac.planar_imaging.StandardImaging FC2
method), 259

plot_analyzed_image ()
(pylinac.planar_imaging.StandardImagingQC3
method), 235

plot_analyzed_image ()
(pylinac.planar_imaging.StandardlmagingQCkV
method), 237

plot_analyzed_image () (pylinac.quart.QuartDVT
method), 116

plot_analyzed_image ()
(pylinac.starshot.Starshot method), 56

method),

plot_analyzed_image () (pylinac.vmat. DRGS
method), 69

plot_analyzed_image () (pylinac.vmat. DRMLC
method), 70

plot_analyzed_image ()
(pylinac.vmat. VMATBase method), 72
plot_analyzed_subimage () (pylinac.acrACRCT
method), 106
plot_analyzed_subimage ()
(pylinac.acrACRMRILarge method), 110
plot_analyzed_subimage ()
(pylinac.ct.CatPhan503 method), 88
plot_analyzed_subimage ()
(pylinac.ct.CatPhan504 method), 85
plot_analyzed_subimage ()
(pylinac.ct.CatPhan600 method), 92
plot_analyzed_subimage ()
(pylinac.ct.CatPhan604 method), 95
plot_analyzed_subimage ()
(pylinac.quart. QuartDVT method), 116
plot_analyzed_subimage ()
(pylinac.starshot.Starshot method), 56
plot_axis_images ()
(pylinac.winston_lutz. WinstonLutz
201
plot_color (pylinac.core.roi.LowContrastDiskROI
attribute), 309
plot_color (pylinac.ct. HUDiskROI attribute), 103
plot_color (pylinac.ct.ThicknessROI attribute), 103
plot_color_cnr (pylinac.core.roi.LowContrastDiskROI
attribute), 309
plot_color_constant
(pylinac.core.roi. LowContrastDiskROI
tribute), 309
plot_difference ()

method),

at-

(pylinac.log_analyzer.Axis

400

Index

pylinac Documentation, Release 3.8.2

method), 144 attribute), 38
plot_expected () (pylinac.log_analyzerAxis pa_gr () (in module pylinac.calibration.tg51), 34

method), 144 preprocess () (pylinac.ct.CatPhanModule method),
plot_histogram () (pylinac.log_analyzer. GammaFluence 99

method), 154 preprocess () (pylinac.ct. CTP404CP504 method),
plot_histogram() (pylinac.picketfence.PicketFence 100

method), 184
plot_images () (pylinac.acrACRCT method), 107
plot_images () (pylinac.acrACRMRILarge method),
111
plot_images ()
117
plot_images ()
method), 201
plot_leaf profile()

(pylinac.quart.QuartDVT method),

(pylinac.winston_lutz. WinstonLutz

(pylinac.picketfence.PicketFence method),
181

plot_linearity () (pylinac.ct. CTP404CP504
method), 100

plot_linearity () (pylinac.quart.QuartHUModule
method), 120

plot_map () (pylinac.log_analyzer. FluenceBase
method), 152
plot_map () (pylinac.log_analyzer. GammaFluence

method), 153
plot_mlc_error_hist ()
(pylinac.log_analyzer MLC method), 147
plot_overlay2axes ()
(pylinac.picketfence. MLCValue
187
plot_passfail_map ()
(pylinac.log_analyzer. GammaFluence
method), 154
plot_profiles () (pylinac.ct.CTP486 method), 102

method),

plot_profiles () (pylinac.quart.QuartUniformityModule

method), 121
plot_rms_by_leaf ()
method), 147
plot_rois () (pylinac.ct.CatPhanModule method), 99
plot_rois () (pylinac.ct. CTP404CP504 method), 100
plot_rois () (pylinac.ct. CTP528CP504 method), 101
plot_rois () (pylinac.quart.QuartGeometryModule
method), 121
plot_rois()
method), 120
plot_rois () (pylinac.quart.QuartUniformityModule
method), 121
plot_summary () (pylinac.winston_lutz. WinstonLutz
method), 202
Point (class in pylinac.core.geometry), 294
post_hoc_metadata ()
(pylinac.log_analyzer.SubbeamManager
method), 150
(pylinac.calibration.tg51.TG5 1 ElectronLegacy

(pylinac.log_analyzer MLC

(pylinac.quart.QuartHUModule

p4q_gr

preprocess () (pylinac.quart.QuartGeometryModule
method), 122

preprocess ()
method), 120

preprocess () (pylinac.quart.QuartUniformityModule
method), 121

previous_segment_num
(pylinac.log_analyzer.DynalogAxisData
tribute), 148

prior_dose_index (pylinac.log_analyzer.DynalogAxisData
attribute), 148

ProfileMixin (class in pylinac.core.profile), 298

PROF ILER (pylinac.field_analysis.Device attribute), 283

properties (pylinac.core.image. XIM attribute), 290

Protocol (class in pylinac.field_analysis), 283

protocol (pylinac.field_analysis.FieldResult
tribute), 281

protocol_results (pylinac.field_analysis.FieldResult
attribute), 281

PTWEPIDQC (class in pylinac.planar_imaging), 254

publish_pdf () (pylinac.acr,ACRCT method), 107

publish_pdf () (pylinac.acrACRMRILarge method),
111

(pylinac.quart. QuartHUModule

at-

at-

publish_pdf () (pylinac.calibration.tg51.TG51ElectronLegacy

method), 39

publish_pdf () (pylinac.calibration.tg51.TG51ElectronModern

method), 40

publish_pdf () (pylinac.calibration.tg51.TG51Photon

method), 37

publish_pdf () (pylinac.calibration.trs398. TRS398Electron
method), 45

publish_pdf () (pylinac.calibration.trs398. TRS398Photon
method), 43

publish_pdf () (pylinac.ct.CatPhan503 method), 89

publish_pdf () (pylinac.ct.CatPhan504 method), 85

publish_pdf () (pylinac.ct.CatPhan600 method), 92

publish_pdf () (pylinac.ct.CatPhan604 method), 96

publish_pdf () (pylinac.field_analysis.FieldAnalysis
method), 279

publish_pdf ()
method), 139

publish_pdf () (pylinac.log_analyzer.TrajectoryLog
method), 140

publish_pdf ()
method), 183

publish_pdf () (pylinac.planar_imaging.DoselabM C2kV
method), 245

publish_pdf () (pylinac.planar_imaging.DoselabMC2MV

(pylinac.log_analyzer.Dynalog

(pylinac.picketfence.PicketFence

Index

401

pylinac Documentation, Release 3.8.2

method), 243

publish_pdf () (pylinac.planar_imaging. IBAPrimusA
method), 258

publish_pdf () (pylinac.planar_imaging. IMTLRad
method), 261

publish_pdf () (pylinac.planar_imaging.LasVegas
method), 240

publish_pdf () (pylinac.planar_imaging.LeedsTOR
method), 230

publish_pdf (
method), 233

publish_pdf ()
method), 255

publish_pdf () (pylinac.planar_imaging. SNCFSQA
method), 263

publish_pdf ()
method), 253

publish_pdf ()
method), 248

(pylinac.planar_imaging.SNCkV

(pylinac.planar_imaging. SNCMV

publish_pdf () (pylinac.planar_imaging. SNCMV]25]0 -

method), 250

publish_pdf () (pylinac.planar_imaging. StandardlmaglggF

method), 260
publish_pdf (
method), 235

r
publish_pdf () (pylinac.planar_imaging. Standardlmagl]rfzgggv

method), 238

publish_pdf () (pylinac.quart. QuartDVT method),
117

publish_pdf ()
56

publish_pdf () (pylinac.vmat. DRGS method), 69

publish_pdf () (pylinac.vmat. DRMLC method), 70

publish_pdf () (pylinac.vmat.VMATBase method),
73

publish_pdf () (pylinac.winston_lutz. WinstonLutz
method), 202

pylinac.core.decorators (module), 312

pylinac.core.geometry (module), 294

core.image (module), 284

core. io (module), 306

core.mask (module), 310

core.profile (module), 297

.roi (module), 308

core.utilities (module), 310

ct (module), 74

log_analyzer (module), 123

pylinac.picketfence (module), 155

pylinac.planar_imaging (module), 205

pylinac.starshot (module), 45

vmat (module), 58

pylinac.winston_lutz (module), 187

pylinac_version (pylinac.core.utilities.ResultBase
attribute), 311

(pylinac.starshot.Starshot method),

pylinac.
pylinac.
pylinac.
pylinac.
pylinac.
pylinac.

core

pylinac.
pylinac.

pylinac.

) (pylinac.planar_imaging.LeedsTORBlue

(pylinac.planar_imaging. PTWEPIDQC

) (pylinac.planar_imaging. StandardlmaglggQgB

Q

QuartDVT (class in pylinac.quart), 115
QuartDVTResult (class in pylinac.quart), 122
QuartGeometryModule (class in pylinac.quart), 121
QuartGeometryModuleOutput (class in
pylinac.quart), 123
QuartHUModule (class in pylinac.quart), 119
QuartHUModuleOutput (class in pylinac.quart), 122
QuartUniformityModule (class in pylinac.quart),
120
QuartUniformityModuleOutput
pylinac.quart), 122

(class in

R

r_50 (pylinac.calibration.tg51.TG51ElectronLegacy at-
tribute), 38
r_50 (pylinac.calibration.tg51. TG51 ElectronModern at-
tribute), 40
50 (pylinac.calibration.trs398. TRS398Electron
attribute), 44
) (in module pylinac.calibration.tg51), 34
r (pylinac.vmat.Segment attribute), 73
r_cozxr (pylinac.vmat.SegmentResult attribute), 71
(pylinac.vmat.Segment attribute), 73
ylinac.vmat.SegmentResult attribute), 71
(pylinac.vmat. DRGS attribute), 69
r_devs (pylinac.vmat. DRMLC attribute), 71
r_devs (pylinac.vmat. VMATBase attribute), 72
rad_time (pylinac.log_analyzer.Subbeam attribute),
150
radius2linepairs (pylinac.ct. CTP528CP504 at-
tribute), 101
radius2linepairs_mm (pylinac.ct. CTP528CP504
attribute), 101
radius_mm (pylinac.starshot. Wobble attribute), 57
RandomNoiseLayer (class in
pylinac.core.image_generator.layers), 324
RATIO (pylinac.core.roi.Contrast attribute), 308
Rectangle (class in pylinac.core.geometry), 296
RectangleROI (class in pylinac.core.roi), 310
report_basic_parameters ()

r_50

(pylinac.log_analyzer.MachineLogs method),
141
resample () (pylinac.core.profile.SingleProfile

method), 300
resolution (pylinac.log_analyzer. FluenceBase
attribute), 151
ResultBase (class in pylinac.core.utilities), 310
results () (pylinac.acrACRCT method), 107

results () (pylinac.acrACRMRILarge method), 112
results () (pylinac.ct.CatPhan503 method), 89
results () (pylinac.ct.CatPhan504 method), 86
results () (pylinac.ct.CatPhan600 method), 93
results () (pylinac.ct.CatPhan604 method), 96

402

Index

pylinac Documentation, Release 3.8.2

results () (pylinac.field_analysis.FieldAnalysis
method), 279

results () (pylinac.picketfence.PicketFence method),
183

results () (pylinac.planar_imaging.DoselabMC2kV
method), 246

results () (pylinac.planar_imaging. DoselabMC2MV
method), 243

results () (pylinac.planar_imaging.IBAPrimusA
method), 258

results () (pylinac.planar_imaging. IMTLRad
method), 262

results () (pylinac.planar_imaging.LasVegas
method), 239

results () (pylinac.planar_imaging.LeedsTOR
method), 230

results () (pylinac.planar_imaging.LeedsTORBlue
method), 233

results () (pylinac.planar_imaging. PTWEPIDQC
method), 256

results () (pylinac.planar_imaging. SNCFSQA
method), 263

results () (pylinac.planar_imaging.SNCkV method),

253

results () (pylinac.planar_imaging. SNCMV method),
248

results () (pylinac.planar_imaging. SNCMV12510

method), 250

results () (pylinac.planar_imaging.StandardlmagingFC2etrieve_image_files ()

method), 259

results_data () (pylinac.picketfence.PicketFence
method), 183

results_data () (pylinac.planar_imaging.IMTLRad
method), 262

results_data () (pylinac.planar_imaging.LasVegas
method), 239

results_data () (pylinac.planar_imaging. SNCFSQA
method), 263

results_data () (pylinac.planar_imaging.StandardImagingFC2

method), 259

results_data () (pylinac.quart. QuartDVT method),
117

results_data () (pylinac.starshot.Starshot method),
56

results_data () (pylinac.vmat.DRGS method), 70

results_data () (pylinac.vmat. DRMLC method), 71

results_data () (pylinac.vmat.VMATBase method),
72

results_data () (pylinac.winston_lutz. WinstonLutz
method), 202

results_data () (pylinac.winston_lutz. WinstonLutz2D
method), 205

retrieve_demo_file () (in module
pylinac.core.io), 306

retrieve_dicom_file () (in module
pylinac.core.io), 306

retrieve_filenames () (in module
pylinac.core.io), 306

(in module

pylinac.core.image), 285

results () (pylinac.planar_imaging.StandardlmagingQCsight_guard_separated

method), 235

(pylinac.picketfence.Picket attribute), 186

results () (pylinac.planar_imaging.StandardImagingQCkVght_penumbra_mm

method), 238
results () (pylinac.quart.QuartDVT method), 117

(
results () (pylinac.starshot.Starshot method), 56
results () (pylinac.vmat. DRGS method), 69
results () (pylinac.vmat. DRMLC method), 71
results () (pylinac.vmat. VMATBase method), 72
results () (pylinac.winston_lutz. WinstonLutz

method), 202
results_data () (pylinac.acrACRCT method), 107
results_data () (pylinac.acrACRMRILarge

method), 112
results_data () (pylinac.ct.CatPhan503 method),
result sg_9dat a () (pylinac.ct.CatPhan504 method),
result 58_6dat a () (pylinac.ct.CatPhan600 method),
result 59_3dat a () (pylinac.ct.CatPhan604 method),
96

results_data () (pylinac.field_analysis.FieldAnalysis
method), 279

(pylinac.field_analysis.FieldResult
282

right_penumbra_percent_mm
(pylinac.field_analysis.FieldResult
282

right_slope_percent_mm
(pylinac.field_analysis.FieldResult
282

RMS (pylinac.log_analyzer.Graph attribute), 142

roi_dist_mm (pylinac.ct.CatPhanModule attribute),
99

roi_dist_mm (pylinac.quart.QuartGeometryModule
attribute), 122

(pylinac.ct.CatPhanModule

attribute),

attribute),

attribute),

roi_radius_mm at-
tribute), 99

roi_radius_mm (pylinac.quart.QuartGeometryModule
attribute), 122

roi_settings (pylinac.ct. CTP515Result attribute),
98

roi_settings (pylinac.ct. CTP528Result attribute),

97

Index

403

pylinac Documentation, Release 3.8.2

ROIResult (class in pylinac.ct), 98

rois (pylinac.ct. CTP486Result attribute), 98

rois_visible (pylinac.ct. CTP515 attribute), 102

roll () (pylinac.core.image.Baselmage method), 287

roll () (pylinac.core.profile.CircleProfile method), 304

rot90 () (pylinac.core.image.Baselmage method), 288

rotn (pylinac.log_analyzer. CouchStruct attribute), 155

run_demo () (pylinac.ct.CatPhan503 static method),
86

run_demo ()
83

run_demo ()
90

run_demo ()
93

run_demo () (pylinac.field_analysis. FieldAnalysis
static method), 277

run_demo () (pylinac.log_analyzer.Dynalog
method), 139

run_demo () (pylinac.log_analyzer. TrajectoryLog
static method), 140

run_demo () (pylinac.picketfence.PicketFence static
method), 181

run_demo () (pylinac.planar_imaging.DoselabMC2kV
static method), 244

run_demo () (pylinac.planar_imaging.DoselabMC2MV
static method), 241

run_demo () (pylinac.planar_imaging.IBAPrimusA
static method), 256

run_demo () (pylinac.planar_imaging.IMTLRad static
method), 262

run_demo () (pylinac.planar_imaging.LasVegas static
method), 239

run_demo () (pylinac.planar_imaging.LeedsTOR static
method), 229

run_demo () (pylinac.planar_imaging.LeedsTORBlue
static method), 233

run_demo () (pylinac.planar_imaging. PTWEPIDQC
static method), 254

run_demo () (pylinac.planar_imaging. SNCFSQA
static method), 264

run_demo () (pylinac.planar_imaging. SNCkV static
method), 251

run_demo () (pylinac.planar_imaging. SNCMV static
method), 246

run_demo () (pylinac.planar_imaging. SNCMVI12510
static method), 251

(pylinac.ct.CatPhan504 static method),
(pylinac.ct.CatPhan600 static method),

(pylinac.ct.CatPhan604 static method),

static

116
run_demo () (pylinac.starshot.Starshot static method),
57
run_demo () (pylinac.vmat. DRGS static method), 67
run_demo () (pylinac.vmat. DRMLC static method), 70
run_demo () (pylinac.winston_lutz. WinstonLutz static
method), 200

S

sad (pylinac.core.image.Dicomlmage attribute), 291

save () (pylinac.core.image.Dicomlmage method), 290

save_analyzed_image () (pylinac.acrACRCT
method), 107

save_analyzed_image ()
(pylinac.acrACRMRILarge method), 113

save_analyzed_image () (pylinac.ct.CatPhan503
method), 89

save_analyzed_image () (pylinac.ct.CatPhan504
method), 86

save_analyzed_image () (pylinac.ct.CatPhan600
method), 93

save_analyzed_image () (pylinac.ct.CatPhan604
method), 96

save_analyzed_image ()
(pylinac.field_analysis.FieldAnalysis method),
280

save_analyzed_image ()
(pylinac.picketfence.PicketFence
183

save_analyzed_image ()
(pylinac.planar_imaging.DoselabM C2kV
method), 246

save_analyzed_image ()
(pylinac.planar_imaging.DoselabM C2MV
method), 243

save_analyzed_image ()
(pylinac.planar_imaging.IBAPrimusA method),
258

save_analyzed_image ()
(pylinac.planar_imaging. IMTLRad — method),
262

save_analyzed_image ()
(pylinac.planar_imaging.LasVegas
241

save_analyzed_image ()
(pylinac.planar_imaging.LeedsTOR method),
230

method),

method),

run_demo () (pylinac.planar_imaging.StandardlmagingF62ve _analyzed_image ()

static method), 259

run_demo () (pylinac.planar_imaging.StandardImagingQC3

static method), 234

run_demo () (pylinac.planar_imaging.StandardImagingQCkV

static method), 236
run_demo () (pylinac.quart.QuartDVT static method),

(pylinac.planar_imaging.LeedsTORBlue
method), 233
save_analyzed_image ()
(pylinac.planar_imaging. PTWEPIDQC
method), 256
save_analyzed_image ()

404

Index

pylinac Documentation, Release 3.8.2

(pylinac.planar_imaging. SNCFSQA method),
264
save_analyzed_image ()

(pylinac.planar_imaging. SNCkV method),
253

save_analyzed_image ()
(pylinac.planar_imaging. SNCMV method),

248

save_analyzed_image ()
(pylinac.planar_imaging. SNCMV12510
method), 251

save_analyzed_image ()
(pylinac.planar_imaging.Standardlmaging FC2
method), 259

save_analyzed_image ()
(pylinac.planar_imaging.StandardlmagingQC3
method), 236

save_analyzed_image ()

(pylinac.planar_imaging.StandardlmagingQCkV sequence_num (pylinac.log_analyzer.Subbeam

method), 238
save_analyzed_image () (pylinac.quart.QuartDVT
method), 119
save_analyzed_image ()
(pylinac.starshot.Starshot method), 56
save_analyzed_subimage () (pylinac.acrACRCT
method), 106
save_analyzed_subimage ()
(pylinac.acrACRMRILarge method), 110
save_analyzed_subimage ()
(pylinac.ct.CatPhan503 method), 89
save_analyzed_subimage ()
(pylinac.ct.CatPhan504 method), 86
save_analyzed_subimage ()
(pylinac.ct.CatPhan600 method), 93
save_analyzed_subimage ()
(pylinac.ct.CatPhan604 method), 96
save_analyzed_subimage ()
(pylinac.quart.QuartDVT method), 119
save_analyzed_subimage ()
(pylinac.starshot.Starshot method), 56
save_as () (pylinac.core.image. XIM method), 290

save_histogram () (pylinac.log_analyzer. GammaFluence

method), 154
save_histogram () (pylinac.picketfence.PicketFence
method), 184
save_images () (pylinac.acrACRCT method), 107
save_images () (pylinac.acrACRMRILarge method),
111
save_images ()
117
save_images () (pylinac.winston_lutz. WinstonLutz
method), 202
save_images_to_stream()
(pylinac.winston_lutz. WinstonLutz

(pylinac.quart.QuartDVT method),

method),

202

save_leaf_profile()
(pylinac.picketfence.PicketFence method),
181

save_map () (pylinac.log_analyzer.FluenceBase
method), 152

save_mlc_error_hist ()
(pylinac.log_analyzer MLC method), 147

save_plot () (pylinac.winston_lutz. WinstonLutz2D
method), 204

save_rms_by_leaf ()
method), 147

save_summary () (pylinac.winston_lutz. WinstonLutz
method), 202

Segment (class in pylinac.vmat), 73

segment_data (pylinac.vmat. VMATResult attribute),
71

SegmentResult (class in pylinac.vmat), 71

(pylinac.log_analyzer MLC

at-
tribute), 150

sid (pylinac.core.image.DicomlImage attribute), 291

sid (pylinac.core.image.Filelmage attribute), 291

SIEMENS (pylinac.field_analysis.Protocol attribute),
283

signal_to_noise (pylinac.core.roi.LowContrastDiskROI

attribute), 309
signal_to_noise
attribute), 119
simple_round () (in module pylinac.core.utilities),
311
sin () (in module pylinac.core.geometry), 294
SingleProfile (class in pylinac.core.profile), 299
size (pylinac.core.profile.CircleProfile attribute), 304
size (pylinac.core.profile. CollapsedCircleProfile
attribute), 305
skew () (pylinac.picketfence.Picket method), 186
Slice (class in pylinac.ct), 98
slicel (pylinac.acrACRMRIResult attribute), 113
slicell (pylinac.acrACRMRIResult attribute), 113
slice_num (pylinac.ct.CatPhanModule attribute), 99
slice_num (pylinac.quart.QuartGeometryModule at-
tribute), 122
slice_num (pylinac.quart.QuartHUModule attribute),
120
slice_num (pylinac.quart.QuartUniformityModule at-
tribute), 121
SNCFSQA (class in pylinac.planar_imaging), 262
SNCkV (class in pylinac.planar_imaging), 251
SNCMV (class in pylinac.planar_imaging), 246
SNCMV12510 (class in pylinac.planar_imaging), 249
SNCProfiler (class in pylinac.core.io), 307
spatial_resolution_module
(pylinac.acrACRCT attribute), 106
spatial_resolution_module

(pylinac.quart.QuartHUModule

Index

405

pylinac Documentation, Release 3.8.2

(pylinac.acrACRCTResult attribute), 109
SpatialResolutionModuleOutput (class in
pylinac.acr), 109

SPLINE (pylinac.core.profile.Interpolation attribute),
299

SPLINE (pylinac.field_analysis.Interpolation attribute),
283

StandardImagingFC2 (class in
pylinac.planar_imaging), 259

StandardImagingQC3 (class in
pylinac.planar_imaging), 233

StandardImagingQCkV (class in

pylinac.planar_imaging), 236
StarProfile (class in pylinac.starshot), 57
Starshot (class in pylinac.starshot), 54
StarshotResults (class in pylinac.starshot), 57
start_angle (pylinac.core.profile.CircleProfile
attribute), 303
start_angle_radians
attribute), 97
STATIC_IMRT (pylinac.log_analyzer.TreatmentType at-
tribute), 143
std (pylinac.core.roi.DiskROI attribute), 308
std (pylinac.core.roi.RectangleROI attribute), 310
stdev (pylinac.ct. ROIResult attribute), 98
stretch () (in module pylinac.core.profile), 297
stretch () (pylinac.core.profile. ProfileMixin method),
298
Structure (class in pylinac.core.utilities), 311
Subbeam (class in pylinac.log_analyzer), 150
SubbeamManager (class in pylinac.log_analyzer), 150

(pylinac.ct. CTP528Result

subbeams (pylinac.log_analyzer.TrajectoryLog at-
tribute), 140

symmetry_area () (in module pylinac.field_analysis),
284

symmetry_pdqg_iec () (in module
pylinac.field_analysis), 284

symmetry_point_difference () (in module

pylinac.field_analysis), 284

T

tan () (in module pylinac.core.geometry), 294

TemporaryZipDirectory (class in pylinac.core.io),
306

test_type (pylinac.vmat. VMATResult attribute), 71

TG51ElectronlLegacy (class in
pylinac.calibration.tg51), 37

TG51ElectronModern (class in
pylinac.calibration.tg51), 39

TG51Photon (class in pylinac.calibration.tg51), 35

thickness_num_slices_combined
(pylinac.ct.CTP404Result attribute), 97

thickness_passed (pylinac.ct.CTP404Result
attribute), 97

ThicknessROI (class in pylinac.ct), 103

threshold (pylinac.log_analyzer.GammaFluence at-
tribute), 153

threshold()
method), 288

tl_corner (pylinac.core.geometry.Rectangle
tribute), 296

t1_corner (pylinac.vmat.Segment attribute), 74

to_csv () (pylinac.log_analyzer.MachineLogs
method), 142

to_csv () (pylinac.log_analyzer. TrajectoryLog
method), 140

to_profiles()
method), 307

tolerance (pylinac.log_analyzer.DynalogHeader at-
tribute), 148

tolerance (pylinac.starshot.Starshot attribute), 54

tolerance_mm (pylinac.picketfence.PFResult
tribute), 185

tolerance_mm (pylinac.starshot.StarshotResults at-
tribute), 57

tolerance_percent (pylinac.vmat. VMATResult at-
tribute), 71

(pylinac.core.image.Baselmage

at-

(pylinac.core.io.SNCProfiler

at-

top_horizontal_distance_from beam_center_mm

(pylinac.field_analysis.FieldResult
282

top_horizontal_distance_from_ cax_mm
(pylinac.field_analysis.FieldResult attribute),
282

top_penumbra_mm (pylinac.field_analysis.FieldResult
attribute), 282

top_penumbra_percent_mm
(pylinac.field_analysis.FieldResult
282

top_position_index_x_y
(pylinac.field_analysis.FieldResult
282

top_slope_percent_mm
(pylinac.field_analysis.FieldResult
282

attribute),

attribute),

attribute),

attribute),

top_vertical_ distance_from_beam_center_mm

(pylinac.field_analysis.FieldResult
282
top_vertical_distance_from_cax_mm

attribute),

(pylinac.field_analysis.FieldResult attribute),
282
tpr2010_from_pdd2010 () (in module

pylinac.calibration.tg51), 33
tr_corner (pylinac.core.geometry.Rectangle
tribute), 296
tr_corner (pylinac.vmat.Segment attribute), 74
TrajectoryLog (class in pylinac.log_analyzer), 139
TrajectoryLogAxisData (class in
pylinac.log_analyzer), 149

at-

406

Index

pylinac Documentation, Release 3.8.2

TrajectoryLogHeader (class in
pylinac.log_analyzer), 149

TreatmentType (class in pylinac.log_analyzer), 143

TRS398Electron (class in
pylinac.calibration.trs398), 44

TRS398Photon (class in pylinac.calibration.trs398),
42

txt_filename (pylinac.log_analyzer.TrajectoryLog
attribute), 140

U

uniformity_index (pylinac.ct. CTP486 attribute),
102

uniformity_index
attribute), 98

(pylinac.ct. CTP486Result

VMATBase (class in pylinac.vmat), 72
VMATResult (class in pylinac.vmat), 71

W

WEBER (pylinac.core.roi.Contrast attribute), 308

window_ceiling () (pylinac.planar_imaging.DoselabMC2kV
method), 246

window_ceiling () (pylinac.planar_imaging.DoselabMC2MV
method), 243

window_ceiling () (pylinac.planar_imaging.IBAPrimusA
method), 256

window_ceiling () (pylinac.planar_imaging.IMTLRad
method), 262

window_ceiling () (pylinac.planar_imaging.LasVegas
method), 241

uniformity_index (pylinac.quart.QuartUniformityModulendow_ceiling () (pylinac.planar_imaging.LeedsTOR

attribute), 121
uniformity_module (pylinac.acrACRCT attribute),

106
uniformity_module (pylinac.acrACRCTResult at-
tribute), 109

uniformity_module (pylinac.acrACRMRIResult at-
tribute), 113
uniformity_module

(pylinac.quart. QuartDVTResult attribute),
122

UniformityModuleOutput (class in pylinac.acr),
109

UP_DOWN (pylinac.picketfence.Orientation attribute),
184

Vv

valleys (pylinac.core.profile. MultiProfile attribute),
302

value (pylinac.ct. ROIResult attribute), 98

value_diff (pylinac.ct. HUDiskROI attribute), 103

values (pylinac.core.profile. MultiProfile attribute), 302

variable_axis (pylinac.winston_lutz. WinstonLutz2D
attribute), 204

method), 231

window_ceiling () (pylinac.planar_imaging.LeedsTORBlue
method), 233

window_ceiling () (pylinac.planar_imaging. PTWEPIDQC
method), 256

window_ceiling () (pylinac.planar_imaging. SNCFSQA
method), 264

window_ceiling () (pylinac.planar_imaging.SNCkV
method), 253

window_ceiling () (pylinac.planar_imaging. SNCMV
method), 248

window_ceiling () (pylinac.planar_imaging. SNCMVI2510
method), 251

window_ceiling () (pylinac.planar_imaging.StandardlmagingFC2
method), 260

window_ceiling () (pylinac.planar_imaging.StandardlmagingQC3
method), 236

window_ceiling () (pylinac.planar_imaging.StandardlmagingQCkV
method), 238

window_floor () (pylinac.planar_imaging.DoselabMC2kV
method), 246

window_floor () (pylinac.planar_imaging.DoselabMC2MV
method), 243

variable_axis (pylinac.winston_lutz. WinstonLutz2DRewuilndow_f1oor () (pylinac.planar_imaging. IBAPrimusA

attribute), 205

VARIAN (pylinac.field_analysis.Protocol attribute), 283

Vector (class in pylinac.core.geometry), 295

vector_is_close () (in
pylinac.core.geometry), 295

version (pylinac.log_analyzer.DynalogHeader
tribute), 147

vert (pylinac.log_analyzer. CouchStruct attribute), 154

vert_profile (pylinac.field_analysis.FieldAnalysis
attribute), 277

visibility (pylinac.core.roi.LowContrastDiskROI
attribute), 309

VMAT (pylinac.log_analyzer.TreatmentType attribute),
143

module

at-

method), 256

window_floor () (pylinac.planar_imaging.IMTLRad
method), 262

window_floor () (pylinac.planar_imaging.LasVegas
method), 241

window_floor () (pylinac.planar_imaging.LeedsTOR
method), 231

window_floor () (pylinac.planar_imaging.LeedsTORBlue
method), 233

window_floor () (pylinac.planar_imaging. PTWEPIDQC
method), 256

window_floor () (pylinac.planar_imaging. SNCFSQA
method), 264

Index

407

pylinac Documentation, Release 3.8.2

window_floor () (pylinac.planar_imaging.SNCkV
method), 253

window_floor () (pylinac.planar_imaging. SNCMV
method), 248

window_floor () (pylinac.planar_imaging. SNCMVI12510

method), 251

window_floor () (pylinac.planar_imaging.StandardImagingFC2

method), 260

window_floor () (pylinac.planar_imaging.StandardlmagingQC3

method), 236

window_floor () (pylinac.planar_imaging.Standardimaging QCkV

method), 238
window_max (pylinac.ct. CTP515 attribute), 102
window_min (pylinac.ct. CTP515 attribute), 102
WinstonLutz (class in pylinac.winston_lutz), 199
WinstonLutz2D (class in pylinac.winston_lutz), 204
WinstonLutz2DResult (class in
pylinac.winston_lutz), 205
WinstonLutzResult (class in pylinac.winston_lutz),
202
wire_ fwhm (pylinac.ct. ThicknessROI attribute), 103
Wobble (class in pylinac.starshot), 57
wobble (pylinac.starshot.Starshot attribute), 54

X

x () (pylinac.core.geometry.Line method), 296

x1 (pylinac.log_analyzer.JawStruct attribute), 154

x2 (pylinac.log_analyzer.JawStruct attribute), 154

x_locations (pylinac.core.profile.CircleProfile
attribute), 304

x_position_mm (pylinac.vmat.SegmentResult at-
tribute), 71

XIM (class in pylinac.core.image), 289

Y

v () (pylinac.core.geometry.Line method), 296

v1 (pylinac.log_analyzer.JawStruct attribute), 154

v2 (pylinac.log_analyzer.JawStruct attribute), 154

y_locations (pylinac.core.profile.CircleProfile
attribute), 304

Z

zref (pylinac.calibration.trs398. TRS398Electron
attribute), 44

408

Index

	Documentation
	Installation
	Quick Start Guide
	Discussion
	Contributing
	Pylinac General Overview
	Installation
	General Tips
	Calibration (TG-51/TRS-398)
	Starshot
	VMAT
	CatPhan
	ACR Phantoms
	Quart
	Log Analyzer
	Picket Fence
	Winston-Lutz
	Planar Imaging
	Field Analysis
	Core Modules
	Image Generator
	Topics
	Troubleshooting
	Contributing
	Changelog

	Indices and tables
	Python Module Index
	Index

